- 2021-02-26 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019七年级数学上册 1 有理数 1有理数的除法
1.4.2有理数的除法(一) 班级 小组 姓名 一、 学习目标: 目标A:体会除法是乘法的逆运算,探索、归纳除法的运算法则, 会进行有理数的除法运算 目标B:根据除法的运算法则熟练进行除法运算。 二.问题引领 问题A:体会除法是乘法的逆运算,探索、归纳除法的运算法则,会进行有理数的除法运算 1. 请同学们回想一下,小学学过的除法运算和乘法运算有什么关系?由2×4=8,我们可以知道8÷2=4或8÷4=2.引入负数后,这种互逆的关系还成立吗?先看下面的问题:怎样计算8÷(-4)呢? 根据除法是乘法的逆运算,就是要求一个数,使它与-4相乘得8. 因为 (-2)×(-4)=8 所以 8÷(-4)=-2 又因为 8×(-)=-2 于是有 8÷(-4)= 8×(-) 上式表明,一个数除以-4可以转化为乘-来进行,即一个数除以-4,等于乘-4的倒数-. 2.请同学们按照上面计算8÷(-4)的思路完成下面问题,看看能不能找到什么规律? 计算:1) (-36)÷9; 2) (-)÷(-); 3) 0÷(-) 归纳:有理数除法法则1:除以一个不等于0的数, 等于乘这个数的 , 即a÷b=a× (b ) 议一议:请同学们通过上面3个算式想一想,当被除数和除数符号相同或不相同时,商的符号有什么规律?商的绝对值有什么规律? 归纳:有理数除法法则2: 两数相除,同号得 ,异号得 ,并把绝对值相 。 0除以任何一个不等于0的数,都得 。 训练A: 化简下列分数 1) 2) 说明:: 分数可以理解为分子除以分母 问题B:根据除法的运算法则熟练进行除法运算 训练B 1.下列命题中错误的是 ( ) A.零不能做除数 B.零没有倒数 C.零除以任何非零的数都得零 D.零没有相反数 2.两个数的商是-4,被除数是2,那么除数是 ( ) A. B. - C. - D. - 3.计算: (1) (-18)÷6 (2) 1÷(-9) (3) 0÷(-8) (4) 1÷(-3) (5) (-6.5)÷0.13 三.训练测评 2 1.计算 (1) -91÷13 (2) 3÷(-2.25) (3) 16÷(-3) (4) (-) ÷3 (5) ÷(-1) (6) -0.25÷ 2.计算 1) 2) 3) 4) 4、若x<y<0,那么+等于 ( ) A. 0 B. -2 C. 2 D. 3 5、如果规定“*”的意义是a*b=a÷b , 求(-3)*的值。 四、课堂小结:收获与反思: 五、课后作业: 小组 姓名 1.下列运算有错误的是( ) A.÷(-3)=3×(-3) B.(-5)÷(-)=-5×(-2) C.8-(-2)=8+2 D.2-7=(+2)+(-7) 2.若>0,<0,则ac( ) A.大于0 B.小于0 C.大于或等于0 D.大小不确定 3.两个不为0的有理数相除,如果交换它们的位置,商不变,那么( ) A.两数相等 B.两数互为相反数 C.两数互为倒数 D.两数相等或互为相反数 4、计算: (1) (-63) ÷(-7) (2) (-2)÷(-0.25) (3) (4) (-4)÷(-1.25) 5、某冷冻厂的一个冷库,现在的室温是-2 ℃.现有一批食品,需在-26 ℃下冷藏.如果每小时能降温4 ℃,要降到所需温度需要几个小时? 2查看更多