2014高考全国新课标卷2(理科数学)试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2014高考全国新课标卷2(理科数学)试卷

‎2014·新课标全国卷Ⅱ(理科数学)‎ ‎1.[2014·新课标全国卷Ⅱ] 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=(  )‎ ‎               ‎ A.{1}B.{2}C.{0,1}D.{1,2}‎ ‎1.D [解析]集合N=[1,2],故M∩N={1,2}.‎ ‎2.[2014·新课标全国卷Ⅱ] 设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=(  )‎ A.-5B.5C.-4+iD.-4-i ‎2.A [解析]由题知z2=-2+i,所以z1z2=(2+i)(-2+i)=i2-4=-5.‎ ‎3.[2014·新课标全国卷Ⅱ] 设向量a,b满足|a+b|=,|a-b|=,则a·b=(  )‎ A.1B.2C.3D.5‎ ‎3.A [解析]由已知得|a+b|2=10,|a-b|2=6,两式相减,得4a·b=4,所以a·b=1.‎ ‎4.[2014·新课标全国卷Ⅱ] 钝角三角形ABC的面积是,AB=1,BC=,则AC=(  )‎ A.5B.C.2D.1‎ ‎4.B [解析]根据三角形面积公式,得BA·BC·sinB=,即×1××sinB=,得sinB=,其中C4,解得m>2或m<-2,故m的取值范围是(-∞,-2)∪(2,+∞).‎ ‎13.[2014·新课标全国卷Ⅱ] (x+a)10的展开式中,x7的系数为15,则a=________.(用数字填写答案)‎ ‎13. [解析]展开式中x7的系数为Ca3=15,‎ 即a3=,解得a=.‎ ‎14.、[2014·新课标全国卷Ⅱ] 函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为________.‎ ‎14.1 [解析]函数f(x)=sin(x+2φ)-2sinφcos(x+φ)=sin[(x+φ)+φ]-2sinφcos(x+φ)=sin(x+φ)cosφ-cos(x+φ)sinφ=sinx,故其最大值为1.‎ ‎15.[2014·新课标全国卷Ⅱ] 已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x-1)>0,则x的取值范围是________.‎ ‎15.(-1,3) [解析]根据偶函数的性质,易知f(x)>0的解集为(-2,2),若f(x-1)>0,则-20),则C(m,,0),=(m,,0).‎ 设n1=(x,y,z)为平面ACE的法向量,‎ 则即 可取n1=.‎ 又n2=(1,0,0)为平面DAE的法向量,‎ 由题设易知|cos〈n1,n2〉|=,即 =,解得m=.‎ 因为E为PD的中点,所以三棱锥EACD的高为.三棱锥EACD的体积V=××××=.‎ ‎19.[2014·新课标全国卷Ⅱ] 某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:‎ 年份 ‎2007‎ ‎2008‎ ‎2009‎ ‎2010‎ ‎2011‎ ‎2012‎ ‎2013‎ 年份代号t ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ 人均纯收入y ‎2.9‎ ‎3.3‎ ‎3.6‎ ‎4.4‎ ‎4.8‎ ‎5.2‎ ‎5.9‎ ‎(1)求y关于t的线性回归方程;‎ ‎(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.‎ 附:回归直线的斜率和截距的最小二乘估计公式分别为:‎ =,=-.‎ ‎19.解:(1)由所给数据计算得=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,‎ (ti-)(yi-)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,‎ ===0.5,‎ =-=4.3-0.5×4=2.3,‎ 所求回归方程为=0.5t+2.3.‎ ‎(2)由(1)知,=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.‎ 将2015年的年份代号t=9,代入(1)中的回归方程,得=0.5×9+2.3=6.8,‎ 故预测该地区2015年农村居民家庭人均纯收入为6.8千元.‎ ‎20.、、[2014·新课标全国卷Ⅱ] 设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.‎ ‎(1)若直线MN的斜率为,求C的离心率;‎ ‎(2)若直线MN在y轴上的截距为2,且|MN|=‎ ‎5|F1N|,求a,b.‎ ‎20.解:(1)根据c=及题设知M,2b2=3ac.‎ 将b2=a2-c2代入2b2=3ac,‎ 解得=,=-2(舍去).‎ 故C的离心率为.‎ ‎(2)由题意知,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①‎ 由|MN|=5|F1N|得|DF1|=2|F1N|.‎ 设N(x1,y1),由题意知y1<0,则 即 代入C的方程,得+=1.②‎ 将①及c=代入②得+=1,‎ 解得a=7,b2=4a=28,故a=7,b=2.‎ ‎21.、[2014·新课标全国卷Ⅱ] 已知函数f(x)=ex-e-x-2x.‎ ‎(1)讨论f(x)的单调性;‎ ‎(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;‎ ‎(3)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).‎ ‎21.解:(1)f′(x)=ex+e-x-2≥0,当且仅当x=0时,等号成立,‎ 所以f(x)在(-∞,+∞)上单调递增.‎ ‎(2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(ex-e-x)+(8b-4)x,‎ g′(x)=2[e2x+e-2x-2b(ex+e-x)+(4b-2)]‎ ‎=2(ex+e-x-2)(ex+e-x-2b+2).‎ ‎(i)当b≤2时,g′(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.‎ ‎(ii)当b>2时,若x满足20,ln2>>0.6928;‎ 当b=+1时,ln(b-1+)=ln,‎ g(ln)=--2+(3+2)ln2<0,‎ ln2<<0.6934.‎ 所以ln2的近似值为0.693.‎ ‎22.[2014·新课标全国卷Ⅱ] 选修41:几何证明选讲 如图14,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:‎ ‎(1)BE=EC;‎ ‎(2)AD·DE=2PB2.‎ 图14‎ ‎22.证明:(1)连接AB,AC.由题设知PA=PD,‎ 故∠PAD=∠PDA.‎ 因为∠PDA=∠DAC+∠DCA,‎ ‎∠PAD=∠BAD+∠PAB,‎ ‎∠DCA=∠PAB,‎ 所以∠DAC=∠BAD,从而BE=EC.‎ 因此BE=EC.‎ ‎(2)由切割线定理得PA2=PB·PC.‎ 因为PA=PD=DC,所以DC=2PB,BD=PB.‎ 由相交弦定理得AD·DE=BD·DC,‎ 所以AD·DE=2PB2.‎ ‎23.[2014·新课标全国卷Ⅱ] 选修44:坐标系与参数方程 在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈.‎ ‎(1)求C的参数方程;‎ ‎(2)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.‎ ‎23.解:(1)C的普通方程为(x-1)2+y2=1(0≤y≤1).‎ 可得C的参数方程为 (t为参数,0≤t≤π).‎ ‎(2)设D(1+cost,sint).由(1)知C是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D处的切线与l垂直,所以直线GD与l的斜率相同,tant=,t=.‎ 故D的直角坐标为,即.‎ ‎24.[2014·新课标全国卷Ⅱ] 选修45:不等式选讲 设函数f(x)=+|x-a|(a>0).‎ ‎(1)证明:f(x)≥2;‎ ‎(2)若f(3)<5,求a的取值范围.‎ ‎24.解:(1)证明:由a>0,有f(x)=+|x-a|≥=+a≥2,所以f(x)≥2.‎ ‎(2)f(3)=+|3-a|.‎ 当a>3时,f(3)=a+,‎ 由f(3)<5得3
查看更多