八年级数学上册第13章全等三角形检测题新版华东师大版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

八年级数学上册第13章全等三角形检测题新版华东师大版

第13章检测题 ‎(时间:100分钟 满分:120分)‎ 一、选择题(每小题3分,共30分)‎ ‎1.下列说法正确的是( C )‎ A.真命题的逆命题是真命题 B.原命题是假命题,则它的逆命题也是假命题 C.命题一定有逆命题 D.定理一定有逆定理 ‎2.如图,四边形ABCD中,AB=AD,BC=CD,则有( A )‎ A.AC垂直平分BD B.BD垂直平分AC C.AC与BD互相垂直平分 D.AD=BD ‎3.(2019·兴安盟)如图,已知AB=AC,点D,E分别在线段AB,AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD( D )‎ A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD              ‎4.如图,已知CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,且AO平分∠BAC,那么图中全等三角形共有( C )‎ A.2对 B.3对 C.4对 D.5对 ‎5.(兰州中考)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是( A )‎ A.50° B.60° C.65° D.70°‎ ‎6.(2019·临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是( B )‎ A.0.5 B.1 C.1.5 D.2‎      ‎7.(2019·包头)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E,再分别以点D,E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是( C )‎ A.1 B. C.2 D. ‎8.(2019·衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是( D )‎ A.60° B.65° C.75° D.80°‎ ‎9.(2019·湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( B )‎ A.24 B.30 C.36 D.42‎      ‎10.(2019·滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为( B )‎ 5‎ A.4 B.3 C.2 D.1‎ 二、填空题(每小题3分,共15分)‎ ‎11.(2019·泰州)命题“三角形的三个内角中至少有两个锐角”是__真命题__(填“真命题”或“假命题”).‎ ‎12.(荆州中考)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是S.S.S..‎          ‎13.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于点D,垂足为点E.若∠B=35°,则∠DAC的度数为75°.‎ ‎14.(2019·白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=__或__.‎ ‎15.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD交于点P,连结AP.有以下结论:①∠BPC=120°;②AP平分∠BAC;③PD=PE;④BD+CE=BC;⑤S△PBD+S△PCE=S△PBC.其中正确的序号是①②③④⑤.‎ 点拨:在BC上截取BQ=BD,连结PQ.∠BPC=180°-(∠PBC+∠PCB)=180°-(∠ABC+∠ACB)=180°-(180°-60°)=120°,∴∠BPD=∠CPE=60°,证△BPD≌△BPQ,△CPE≌△CPQ,可知③④⑤均成立 三、解答题(共75分)‎ ‎16.(8分)(2019·孝感)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.‎ 证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,∴Rt△ACB≌Rt△BDA(H.L.),∴∠ABC=∠BAD,∴AE=BE ‎17.(9分)(2019·南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?‎ 5‎ 解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,∴△ABC≌△DEC(S.A.S.),∴AB=DE ‎18.(9分)(2019·桂林)如图,AB=AD,BC=DC,点E在AC上.‎ ‎(1)求证:AC平分∠BAD;‎ ‎(2)求证:BE=DE.‎ 证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(S.S.S.),∴∠BAC=∠DAC,即AC平分∠BAD (2)由(1)∠BAE=∠DAE,在△BAE与△DAE中,得∴△BAE≌△DAE(S.A.S.),∴BE=DE ‎19.(9分)(2019·杭州)如图,在△ABC中,AC<AB<BC.‎ ‎(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B;‎ ‎(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.‎ 解:(1)∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B (2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°‎ ‎20.(9分)(2019·黄石)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF,EF相交于点F.‎ ‎(1)求证:∠C=∠BAD;‎ ‎(2)求证:AC=EF.‎ 5‎ 证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC,∴∠C+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠C=∠BAD (2)∵AF∥BC,∴∠FAE=∠AEB,∵AB=AE,∴∠B=∠AEB,∴∠B=∠FAE,且∠AEF=∠BAC=90°,AB=AE,∴△ABC≌△EAF(A.S.A.),∴AC=EF ‎21.(10分)(2019·重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.‎ ‎(1)若∠C=36°,求∠BAD的度数;‎ ‎(2)求证:FB=FE.‎ ‎(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°-36°=54° (2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE ‎22.(10分)(铜仁中考)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连结DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.‎ 证明:作DG∥BC交AC于点G,则∠DGF=∠ECF,∴△DFG≌△EFC,∴GD=CE.∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,∵DG∥BC,∴∠ADG=∠B,∠AGD=∠ACB,∴∠A=∠ADG=∠AGD,∴△ADG是等边三角形,∴AD=GD,∴AD=CE ‎23.(11分)(2019·安顺)(1)如图①,在四边形ABCD中,AB∥CD,点E是BC 5‎ 的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.‎ 解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.‎ AB,AD,DC之间的等量关系为__AD=AB+DC__;‎ ‎(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.‎ 解:(1)AD=AB+DC,理由如下:∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AB∥CD,∴∠F=∠BAE,∴∠DAF=∠F,∴AD=DF,∵点E是BC的中点,∴CE=BE,且∠F=∠BAE,∠AEB=∠CEF,∴△CEF≌△BEA(A.A.S.),∴AB=CF,∴AD=CD+CF=CD+AB (2)AB=AF+CF,理由如下:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC,∴△AEB≌△GEC(A.A.S.),∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∵CG=CF+FG,∴AB=AF+CF 5‎
查看更多

相关文章

您可能关注的文档