- 2021-04-14 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学专题复习全等三角形压轴题分类解析无答案word
三角形综合题归类 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。 考点:利用角相等证明垂直 1. 我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。 已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。 2. 如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:CD=BF;(2)求证:AD⊥CF;(3)连接AF,试判断△ACF的形状. A B C D E F 图9 拓展巩固:如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE. 3. 如图1,已知正方形的边在正方形的边上,连接,. (1)试猜想与有怎样的位置关系,并证明你的结论; (2)将正方形绕点按顺时针方向旋转,使点落在边上,如图2,连接和.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由. 4.如图1,的边BC在直线上,且的边也 在直线 上,边与边重合,且 (1) 在图1中,请你通过观察、测量,猜想并写出与所满足的 数量关系和位置关系; (2) 将沿直线向左平移到图2的位置时,交于点,连接 .猜想并写出与所满足的数量关系和位置关系,请证明你的猜想; (3)将沿直线向左平移到图3的位置时,的延长线交的延长 A B E C F P l (3) Q 线于点Q,连结,你认为(2)中所猜想的与的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由. l (1) A B (F) (E) C P A B E C F P Q (2) l 等腰三角形(中考重难点之一) 考点1:等腰三角形性质的应用 1. 两个全等的含,角的三角板和三角板,如图所示放置,三点在一条直线上,连结,取的中点,连结.试判断的形状,并说明理由. 压轴题拓展:(三线合一性质的应用)已知中,,,为边的中点,,绕点旋转,它的两边分别交、(或它们的延长线)于、. 当绕点旋转到于时(如图1),易证.当绕点旋转到和不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,,,又有怎样的数量关系?请写出你的猜想,不需证明. 2. 已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC ,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。(1) BF=AC (2) CE=BF (3)CE与BC的大小关系如何。 考点:等腰直角三角形(45度的联想) 1. 如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边 经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM 的平分线BF相交于点F. ⑴ 如图14―1,当点E在AB边的中点位置时: ① 通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ; ② 连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ; ③ 请证明你的上述两猜想. ⑵ 如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N, 使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明 2. 在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中点,DG⊥AC交AB于点G. (1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FH⊥FC,交直线AB于点H.①求证:DG=DC ②判断FH与FC的数量关系并加以证明. (2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变.(直接写出结论,不必证明) 图1 图2 同类变式: 已知:△ABC为等边三角形,M是BC延长线上一点,直角三角尺的一条直角边经过点A,且60º角的顶点E在BC上滑动,(点E不与点B、C重合),斜边与∠ACM的平分线CF交于点F (1)如图(1)当点E在BC边得中点位置时 猜想AE与EF满足的数量关系是 . 连结点E与AB边得中点N,猜想BE和CF满足的数量关系是 . 请证明你的上述猜想; (2)如图(2)当点E在BC边得任意位置时,AE和EF有怎样的数量关系,并说明你的理由? 附加思考题: 以的两边、为腰分别向外作等腰和等腰, .连接,、分别是、的中点.探究:与的位置关系及数量关系. ⑴如图① 当为直角三角形时,与的位置关系是 ;线段与的数量关系是 ; ⑵将图①中的等腰绕点沿逆时针方向旋转()后,如图②所示,⑴问中得到的两个结论是否发生改变?并说明理由. 24、已知:如图,矩形中点为延长线上一点,连接,且,点分别在上,且。(1)若,求的长; (2)若,求证:。 12、(2019年宁德市)(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. ⑴ 求证:△AMB≌△ENB;⑵ ①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; E A D B C N M ⑶ 当AM+BM+CM的最小值为时,求正方形的边长. 28.如图甲,已知∠ABC=90°,△ABD是边长为2的等边三角形,点E为射线BC上任意一点(点E与点B不重合),连结AE,在AE的上方作等边三角形AEF,连结FD并延长交射线BC于点G. (1)如图乙,当BE=BA时,求证:△ABE≌△ADF; (2)如图甲,当△AEF与△ABD不重叠时,求∠FGC的度数; (3)若将已知条件中的“在AE的上方作等边三角形AEF,连结FD并延长交射线BC于点G.”改为“在AE的下方作等边三角形AEF,连结FD交射线BC于点G.”(如图丙所示),试问当点E在何处时BD∥EF?并求此时△AEF的周长. 图甲 A C B D F G E 图乙 A B D F E G C 图丙 F G A C B D E查看更多