- 2021-04-13 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版2020年秋季小学五年级数学上册全册单元小结归纳总结知识点小结
人教版2020年秋季小学五年级数学上册 全册单元小结归纳总结 目 录 第一单元归纳总结(知识点小结) 小数乘法 1 第二单元归纳总结(知识点小结) 位 置 3 第三单元归纳总结(知识点小结) 小数除法 3 第四单元归纳总结(知识点小结) 可能性 5 第五单元归纳总结(知识点小结) 简易方程 5 第六单元归纳总结(知识点小结) 多边形的面积 7 第七单元归纳总结(知识点小结) 数学广角——植树问题 9 10 第一单元归纳总结(知识点小结) 小数乘法 1、小数乘整数: @意义——求几个相同加数的和的简便运算。 如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。 @计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 2、小数乘小数: @意义——就是求这个数的几分之几是多少。 如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。 @计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。 3、规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。 4、求近似数的方法一般有三种: 10 ⑴四舍五入法; ⑵进一法; ⑶去尾法 5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。 6、小数四则运算顺序和运算定律跟整数是一样的。 7、运算定律和性质: @ 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) @ 减法: a-b-c=a-(b+c) a-(b+c)=a-b-c @ 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】 @ 除法: a÷b÷c=a÷(b×c) 10 a÷(b×c) =a÷b÷c 第二单元归纳总结(知识点小结) 位 置 1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。 2、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。 (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) 2、图形左右平移行数不变;图形上下平移列数不变。 第三单元归纳总结(知识点小结) 小数除法 1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。 如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。 10 2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。 3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。 注意:如果被除数的位数不够,在被除数的末尾用0补足。 4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。 5、除法中的变化规律: ①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。 ③被除数不变,除数缩小,商扩大。 6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 @ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32. 10 7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。 第四单元归纳总结(知识点小结) 可能性 1、有些事件的发生是确定的,有些是不确定的。 可能 (不能确定) (确定) 可能性 不可能 一定 2、事件发生的机会(或概率)有大小。 可能性 大 数量多 小 数量少 第五单元归纳总结(知识点小结) 简易方程 1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。 注: 加号、减号除号以及数与数之间的乘号不能省略。 2、a×a可以写作a·a或a2 读作a的平方。 注: 2a表示a+a ; a2表示a×a 3、方程:含有未知数的等式称为方程。 10 4、使方程左右两边相等的未知数的值,叫做方程的解。 5、求方程的解的过程叫做解方程。 6、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 7、10个数量关系式: @ 加法; 和=加数+加数 ; 一个加数=和-两一个加数 @ 减法: 差=被减数-减数 ; 被减数=差+减数 ; 减数=被减数-差 @乘法: 积=因数×因数 ; 一个因数=积÷另一个因数 @ 除法: 10 商=被除数÷除数 ; 被除数=商×除数 ; 除数=被除数÷商 第六单元归纳总结(知识点小结) 多边形的面积 1、长方形: @ 周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母表示:C=(a+b)×2 @面积=长×宽 字母表示:S=ab 2、正方形: @周长=边长×4 字母表示:C=4a @面积=边长×边长 字母表示:S=a2 3、平行四边形的面积=底×高 字母表示: S=ah 10 4、三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母表示: S=ah÷2 5、梯形的面积=(上底+下底)×高÷2 字母表示: S=(a+b)h÷2 上底=面积×2÷高-下底, 下底=面积×2÷高-上底; 高=面积×2÷(上底+下底) 6、平行四边形面积公式推导:剪拼、平移、割补法 7、三角形面积公式推导:旋转 、拼凑法 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形, 长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底; 长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高; 长方形的面积等于平行四边形的面积, 10 平行四边形的面积等于三角形面积的2倍, 因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2 8、梯形面积公式推导:旋转、拼凑法 9、两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高; 平行四边形面积等于梯形面积的2倍, 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2 10、等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。 11、长方形框架拉成平行四边形,周长不变,面积变小。 12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。 第七单元归纳总结(知识点小结) 数学广角——植树问题 10 1、 只载一端(封闭线路植树问题) 如图: 间隔数=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长 2、 两端都载: 如图: 间隔数+1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长 全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长 3、 两端都不载 如图: 间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长 全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长 10查看更多