- 2021-04-12 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
不等式的解集教案2
2.3 不等式的解集 本节知识点 1.能够根据具体问题中的大小关系了解不等式的意义. 2.理解不等式的解、不等式的解集、解不等式这些概念的含义. 3.会在数轴上表示不等式的解集. 教学过程 一、.创设问题情境,引入新课 1、上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质. 2、在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗? 上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试. 二、.新课讲授 1.现实生活中的不等式. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米? 分析:人转移到安全区域需要的时间最少为秒,导火线燃烧的时间为秒,要使人转移到安全地带,必须有:>. 解:设导火线的长度应为x cm,根据题意,得 > ∴x>5. 2.想一想 (1)x=5,6,8能使不等式x>5成立吗? (2)你还能找出一些使不等式x>5成立的x的值吗? 解:(1)x=5不能使x>5成立,x=6,8能使不等式x>5成立. (2)x=9,10,11…等比5大的数都能使不等式x>5成立. 由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗? 解:可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x>5的解.所以不等式的解不唯一,有无数个解. 正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集 请大家再类推出解不等式的概念. 求不等式解集的过程叫解不等式. 3.议一议. 请你用自己的方式将不等式x>5的解集和不等式x-5≤-1的解集分别表示在数轴上,并与同伴交流. 解:不等式x 3 >5的解集可以用数轴上表示5的点的右边部分来表示(图1-3),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内. 图1-3 不等式x-5≤-1的解集x≤4可以用数轴上表示4的点及其左边部分来表示(图1-4),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内. 图1-4 请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明. 解:如x>3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点. x<3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈. x≥3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点. x≤3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点. 4.例题讲解 投影片(2.3 A) 根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来. (1)x-2≥-4;(2)2x≤8 (3)-2x-2>-10 解:(1)根据不等式的基本性质1,两边都加上2,得x≥-2 在数轴上表示为: 图1-5 (2)根据不等式的基本性质2,两边都除以2,得x≤4 在数轴上表示为: 图1-6 (3)根据不等式的基本性质1,两边都加上2,得-2x>-8 根据不等式的基本性质3,两边都除以-2,得x<4 在数轴上表示为: 图1-7 三、.课堂练习 1.判断正误: (1)不等式x-1>0有无数个解; (2)不等式2x-3≤0的解集为x≥. 3 2.将下列不等式的解集分别表示在数轴上: (1)x>4;(2)x≤-1; (3)x≥-2;(4)x≤6. 1.解:(1)∵x-1>0,∴x>1 ∴x-1>0有无数个解.∴正确. (2)∵2x-3≤0,∴2x≤3, ∴x≤,∴结论错误. 2.解: 图1-8 四、.课时小结 本节课学习了以下内容 1.理解不等式的解,不等式的解集,解不等式的概念. 2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来. Ⅴ.课后作业 习题1.3 五、.活动与探究 小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗? 解:不正确. 从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x<3. 所以不等式x+3<6的解集为x<3,而不是x<2.当然小于2的值都在x<3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部. 因此说x<2是不等式x+3<6的解是错误的. 板书设计 2.3 不等式的解集 一、1.现实生活中的不等式(水费问题); 2.想一想(类推不等式中的有关概念); 3.议一议(如何把不等式的解集在数轴上表示出来); 4.例题讲解. 二、课堂练习 3查看更多