- 2021-04-20 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
小学数学精讲教案6_2_3 分数应用题(三) 学生版
分数应用题(三) 教学目标 1. 分析题目确定单位“1” 2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题 3. 抓住不变量,统一单位“1” 知识点拨 一、知识点概述: 分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键. 关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a是b的几分之几,就把数b看作单位“1”. (2)甲比乙多,乙比甲少几分之几? 方法一:可设乙为单位“”,则甲为,因此乙比甲少. 方法二:可设乙为份,则甲为份,因此乙比甲少. 二、怎样找准分数应用题中单位“1” (一)、部分数和总数 在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。 例如: 我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。 解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。 (二)、两种数量比较 分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。 例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”), 解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。 (三)、原数量与现数量 有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。 例如:水结成冰后体积增加了,冰融化成水后,体积减少了。 完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来的水是单位“1” 冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了” →原来的冰是单位“1” 解题关键:要结合语文知识将题目简化的文字丰富后在分析 例题精讲 单位“”变化 【例 1】 养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的倍.鸭比鸡少几分之几? 【巩固】 某校男生比女生多,女生比男生少几分之几? 【例 2】 一炉铁水凝成铁块 ,其体积缩小了,那么这个铁块又熔化成铁水(不计损耗),其中体积增加了几分之几? 【巩固】 水结成冰后体积增大它的. 问:冰化成水后体积减少它的几分之几? 【例 3】 磁悬浮列车的能耗很低。它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________倍。 【例 4】 在下降的电梯中称重,显示的重量比实际体重减少;在上升的电梯中称重,显示的重量比实际体重增加.小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,小明和小刚实际体重的比是 . 【例 1】 学校阅览室里有36名学生在看书,其中女生占,后来又有几名女生来看书,这时女生人数占所有看书人数的.问后来又有几名女生来看书? 【巩固】 工厂原有职工128人,男工人数占总数的,后来又调入男职工若干人,调入后男工人数占总人数的,这时工厂共有职工 人. 【巩固】 学校派出60名选手参加2008年“华罗庚金杯小学数学邀请赛”,其中女选手占.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数的.正式参赛的女选手有多少名? 【巩固】 某公司有的职员参加新产品的开发工作,后来又有名职工主动参加,这样参加新产品开发的职工人数是其余人数的,原来有多少职工参加开发工作? 【例 2】 春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多,女孩的平均身高比男孩高10%,这个班男孩的平均身高是 厘米。 【例 3】 有甲、乙两桶油,甲桶油的质量是乙桶的倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的 倍,乙桶中原有油 千克. 【例 1】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变? 【巩固】 某工厂二月份比元月份增产,三月份比二月份减产.问三月份比元月份增产了还是减产了? 【巩固】 一件商品先涨价,然后再降价,问现在的价格和原价格比较升高、降低还是不变? 【例 2】 某校三年级有学生240人,比四年级多 ,比五年级少 .四年级、五年级各多少人? 【巩固】 把个人分成四队,一队人数是二队人数的倍,一队人数是三队人数的倍,那么四队有多少个人? 【例 3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的,美术班人数相当于另外两个班人数的,体育班有人,音乐班和美术班各有多少人? 【巩固】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的,李先生的年龄是另外三人年龄和的 ,赵先生的年龄是其他三人年龄和的,杨先生26岁,你知道王先生多少岁吗? 【巩固】 四只小猴吃桃,第一只小猴吃的是另外三只的总数的,第二只小猴吃的是另外三只吃的总数的,第三只小猴吃的是另外三只的总数的,第四只小猴将剩下的个桃全吃了.问四只小猴共吃了多少个桃? 【巩固】 兄弟四人去买电视,老大带的钱是另外三人的一半,老二带的钱是另外三人的1/3,老三带的钱是另外三人总钱数的1/4,老四带91元,兄弟四人一共带了多少钱? 【例 1】 小刚给王奶奶运蜂窝煤,第一次运了全部的,第二次运了块,这时已运来的恰好是没运来的.问还有多少块蜂窝煤没有运来? 【巩固】 五(一)班原计划抽的人参加大扫除,临时又有个同学主动参加,实际参加扫除的人数是其余人数的.原计划抽多少个同学参加大扫除? 【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的,这个学校有多少人? 【例 1】 小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少;如果小刚给小莉24个,则小刚的玻璃球比小莉少,小莉和小刚原来共有玻璃球多少个? 【例 2】 某班一次集会,请假人数是出席人数的,中途又有一人请假离开,这样一来,请假人数是出席人数的,那么,这个班共有多少人? 【巩固】 小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数,他今天比昨天多读了页,这时已经读完的页数是还没读的页数的,问题是,这本书共有多少页?” 【例 3】 某校四年级原有两个班,现在要重新编为三个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的人组成新三班.如果新一班的人数比新二班的人数多,那么原一班有多少人? 【巩固】 某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的和二车间人数的分到一车间,将原来的一车间人数的和二车间人数的分到二车间,两个车间剩余的140人组成劳动服务公司,现在二车间人数比一车间人数多,现在一车间有 人,二车间有 人. 【例 1】 林林倒满一杯纯牛奶,第一次喝了,然后加入豆浆,将杯子斟满并搅拌均匀,第二次林林又喝了,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 (用分数表示)。 【例 2】 参加迎春杯数学竞赛的人数共有2000多人.其中光明区占,中心区占,朝阳区占,剩余的全是远郊区的学生.比赛结果,光明区有去的学生得奖,中心区有的学生得奖,朝阳区有的学生得奖,全部获奖者的号远郊区的学生.那么参赛学生有多少名?获奖学生有多少名? 【例 3】 如图⑴,线段将长方形纸分成面积相等的两部分.沿将这张长方形纸对折后得到图⑵,将图⑵沿对称轴对折,得到图⑶,已知图⑶所覆盖的面积占长方形纸面积的,阴影部分面积为平方厘米.长方形的面积是多少?查看更多