- 2021-04-17 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习练习:6_2 等差数列及其前n项和
1.等差数列的定义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是an=a1+(n-1)d. 3.等差中项 由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时,A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an. (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d. (4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列. (5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列. (6)数列Sm,S2m-Sm,S3m-S2m,…构成等差数列. 5.等差数列的前n项和公式 设等差数列{an}的公差为d,其前n项和Sn=或Sn=na1+d. 6.等差数列的前n项和公式与函数的关系 Sn=n2+n. 数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数). 7.等差数列的前n项和的最值 在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值. 【知识拓展】 等差数列的四种判断方法 (1)定义法:an+1-an=d(d是常数)⇔{an}是等差数列. (2)等差中项法:2an+1=an+an+2 (n∈N*)⇔{an}是等差数列. (3)通项公式:an=pn+q(p,q为常数)⇔{an}是等差数列. (4)前n项和公式:Sn=An2+Bn(A,B为常数)⇔{an}是等差数列. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (2)等差数列{an}的单调性是由公差d决定的.( √ ) (3)等差数列的前n项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{an}的通项公式an=3-2n,则它的公差为-2.( √ ) 1.在等差数列{an}中,若a2=4,a4=2,则a6等于( ) A.-1 B.0 C.1 D.6 答案 B 解析 由等差数列的性质,得a6=2a4-a2=2×2-4=0,故选B. 2.(教材改编)设数列{an}是等差数列,其前n项和为Sn,若a6=2且S5=30,则S8等于( ) A.31 B.32 C.33 D.34 答案 B 解析 由已知可得解得 ∴S8=8a1+d=32. 3.(2016·全国乙卷)已知等差数列{an}前9项的和为27,a10=8,则a100等于( ) A.100 B.99 C.98 D.97 答案 C 解析 由等差数列性质,知S9===9a5=27,得a5=3,而a10=8,因此公差d==1, ∴a100=a10+90d=98,故选C. 4.设数列{an}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7等于( ) A.14 B.21 C.28 D.35 答案 C 解析 ∵a3+a4+a5=3a4=12,∴a4=4, ∴a1+a2+…+a7=7a4=28. 5.若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和最大. 答案 8 解析 因为数列{an}是等差数列,且a7+a8+a9=3a8>0,所以a8>0.又a7+a10=a8+a9<0,所以a9<0.故当n=8时,其前n项和最大. 题型一 等差数列基本量的运算 例1 (1)在数列{an}中,若a1=-2,且对任意的n∈N*有2an+1=1+2an,则数列{an}前10项的和为( ) A.2 B.10 C. D. (2)(2016·北京)已知{an}为等差数列,Sn为其前n项和.若a1=6,a3+a5=0,则S6=________. 答案 (1)C (2)6 解析 (1)由2an+1=1+2an得an+1-an=, 所以数列{an}是首项为-2,公差为的等差数列, 所以S10=10×(-2)+×=. (2)∵a3+a5=2a4=0,∴a4=0. 又a1=6,∴a4=a1+3d=0,∴d=-2. ∴S6=6×6+×(-2)=6. 思维升华 等差数列运算问题的通性通法 (1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题. (1)设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( ) A.13 B.35 C.49 D.63 (2)(2016·江苏)已知{an}是等差数列,Sn是其前n项和.若a1+a=-3,S5=10,则a9的值是________. 答案 (1)C (2)20 解析 (1)∵a1+a7=a2+a6=3+11=14, ∴S7==49. (2)设等差数列{an}的公差为d,由题意可得 解得 则a9=a1+8d=-4+8×3=20. 题型二 等差数列的判定与证明 例2 已知数列{an}中,a1=,an=2-(n≥2,n∈N*),数列{bn}满足bn=(n∈N*). (1)求证:数列{bn}是等差数列; (2)求数列{an}中的最大项和最小项,并说明理由. (1)证明 因为an=2-(n≥2,n∈N*), bn=(n∈N*), 所以bn+1-bn=- =-=-=1. 又b1==-. 所以数列{bn}是以-为首项,1为公差的等差数列. (2)解 由(1)知bn=n-, 则an=1+=1+. 设f(x)=1+, 则f(x)在区间(-∞,)和(,+∞)上为减函数. 所以当n=3时,an取得最小值-1,当n=4时,an取得最大值3. 引申探究 本例中,若将条件变为a1=,nan+1=(n+1)an+n(n+1),试求数列{an}的通项公式. 解 由已知可得=+1, 即-=1,又a1=, ∴是以=为首项,1为公差的等差数列, ∴=+(n-1)·1=n-, ∴an=n2-n. 思维升华 等差数列的四个判定方法 (1)定义法:证明对任意正整数n都有an+1-an等于同一个常数. (2)等差中项法:证明对任意正整数n都有2an+1=an+an+2后,可递推得出an+2-an+1=an+1-an=an-an-1=an-1-an-2=…=a2-a1,根据定义得出数列{an}为等差数列. (3)通项公式法:得出an=pn+q后,得an+1-an=p对任意正整数n恒成立,根据定义判定数列{an}为等差数列. (4)前n项和公式法:得出Sn=An2+Bn后,根据Sn,an的关系,得出an,再使用定义法证明数列{an}为等差数列. (1)在数列{an}中,若a1=1,a2=,=+(n∈N*),则该数列的通项为( ) A.an= B.an= C.an= D.an= 答案 A 解析 由已知式=+可得 -=-,知{}是首项为=1,公差为-=2-1=1的等差数列,所以=n,即an=. (2)数列{an}满足a1=1,a2=2,an+2=2an+1-an+2. ①设bn=an+1-an,证明{bn}是等差数列; ②求{an}的通项公式. ①证明 由an+2=2an+1-an+2, 得an+2-an+1=an+1-an+2, 即bn+1=bn+2. 又b1=a2-a1=1, 所以{bn}是首项为1,公差为2的等差数列. ②解 由①得bn=1+2(n-1)=2n-1, 即an+1-an=2n-1. 于是 (ak+1-ak)= (2k-1), 所以an+1-a1=n2,即an+1=n2+a1. 又a1=1,所以{an}的通项公式为an=n2-2n+2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质 例3 (1)(2015·广东)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=________. (2)已知{an},{bn}都是等差数列,若a1+b10=9,a3+b8=15,则a5+b6=________. 答案 (1)10 (2)21 解析 (1)因为{an}是等差数列,所以a3+a7=a4+a6=a2+a8=2a5,a3+a4+a5+a6+a7=5a5=25,所以a5=5,故a2+a8=2a5=10. (2)因为{an},{bn}都是等差数列,所以2a3=a1+a5,2b8=b10+b6,所以2(a3+b8)=(a1+b10)+(a5+b6),即2×15=9+(a5+b6),解得a5+b6=21. 命题点2 等差数列前n项和的性质 例4 (1)设等差数列{an}的前n项和为Sn,且S3=-12,S9=45,则S12=________. (2)在等差数列{an}中,a1=-2 018,其前n项和为Sn,若-=2,则S2 018的值等于( ) A.-2 018 B.-2 016 C.-2 019 D.-2 017 答案 (1)114 (2)A 解析 (1)因为{an}是等差数列,所以S3,S6-S3,S9-S6,S12-S9成等差数列,所以2(S6-S3)=S3+(S9-S6),即2(S6+12)=-12+(45-S6),解得S6=3. 又2(S9-S6)=(S6-S3)+(S12-S9), 即2×(45-3)=(3+12)+(S12-45),解得S12=114. (2)由题意知,数列{}为等差数列,其公差为1, ∴=+(2 018-1)×1 =-2 018+2 017=-1. ∴S2 018=-2 018. 思维升华 等差数列的性质 (1)项的性质:在等差数列{an}中,am-an=(m-n)d⇔=d(m≠n),其几何意义是点(n,an),(m,am)所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{an}中,Sn为其前n项和,则 ①S2n=n(a1+a2n)=…=n(an+an+1); ②S2n-1=(2n-1)an. (1)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11等于( ) A.58 B.88 C.143 D.176 (2)等差数列{an}与{bn}的前n项和分别为Sn和Tn,若=,则等于( ) A. B. C. D. 答案 (1)B (2)A 解析 (1)S11== ==88. (2)==== ==. 6.等差数列的前n项和及其最值 考点分析 公差不为0的等差数列,求其前n项和与最值在高考中时常出现.题型有小题,也有大题,难度不大. 典例1 (1)在等差数列{an}中,2(a1+a3+a5)+3(a7+a9)=54,则此数列前10项的和S10等于( ) A.45 B.60 C.75 D.90 (2)在等差数列{an}中,S10=100,S100=10,则S110=________. 解析 (1)由题意得a3+a8=9, 所以S10====45. (2)方法一 设数列{an}的首项为a1,公差为d, 则解得 所以S110=110a1+d=-110. 方法二 因为S100-S10==-90, 所以a11+a100=-2, 所以S110= ==-110. 答案 (1)A (2)-110 典例2 在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值. 规范解答 解 ∵a1=20,S10=S15, ∴10×20+d=15×20+d, ∴d=-. 方法一 由an=20+(n-1)×=-n+, 得a13=0. 即当n≤12时,an>0,当n≥14时,an<0. ∴当n=12或n=13时,Sn取得最大值, 且最大值为S12=S13=12×20+× =130. 方法二 Sn=20n+· =-n2+n =-2+. ∵n∈N*,∴当n=12或n=13时,Sn有最大值,且最大值为S12=S13=130. 方法三 由S10=S15,得a11+a12+a13+a14+a15=0. ∴5a13=0,即a13=0. ∴当n=12或n=13时,Sn有最大值,且最大值为S12=S13=130. 1.(2016·重庆一诊)在数列{an}中,an+1-an=2,a2=5,则{an}的前4项和为( ) A.9 B.22 C.24 D.32 答案 C 解析 由an+1-an=2,知{an}为等差数列且公差d=2,∴由a2=5,得a1=3,a3=7,a4=9,∴前4项和为3+5+7+9=24,故选C. 2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( ) A.钱 B.钱 C.钱 D.钱 答案 D 解析 设等差数列{an}的首项为a1,公差为d, 依题意有故选D. 3.(2017·佛山调研)已知等差数列{an}满足a2=3,Sn-Sn-3=51(n>3),Sn=100,则n的值为( ) A.8 B.9 C.10 D.11 答案 C 解析 由Sn-Sn-3=51,得an-2+an-1+an=51, 所以an-1=17,又a2=3, Sn==100,解得n=10. 4.在等差数列{an}中,a9=a12+6,则数列{an}的前11项和S11等于( ) A.24 B.48 C.66 D.132 答案 D 解析 方法一 由a1+8d=(a1+11d)+6, 得a1+5d=12,∴a1=12-5d. 又S11=11a1+d=11a1+55d =11(12-5d)+55d=132. 方法二 由a9=a12+6,得2a9-a12=12. 由等差数列的性质得,a6+a12-a12=12,a6=12,S11===132,故选D. 5.已知数列{an}满足an+1=an-,且a1=5,设{an}的前n项和为Sn,则使得Sn取得最大值的序号n的值为( ) A.7 B.8 C.7或8 D.8或9 答案 C 解析 由题意可知数列{an}是首项为5,公差为-的等差数列,所以an=5-(n-1)=,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以Sn取得最大值时,n=7或n=8,故选C. *6.设等差数列{an}满足a1=1,an>0(n∈N*),其前n项和为Sn,若数列{}也为等差数列,则的最大值是( ) A.310 B.212 C.180 D.121 答案 D 解析 设数列{an}的公差为d, 依题意得2=+, 因为a1=1,所以2=+, 化简可得d=2a1=2, 所以an=1+(n-1)×2=2n-1, Sn=n+×2=n2, 所以==()2 =2 =2≤121, 故选D. 7.(2015·安徽)已知数列{an}中,a1=1,an=an-1+(n≥2),则数列{an}的前9项和等于________. 答案 27 解析 由题意知数列{an}是以1为首项,以为公差的等差数列,∴S9=9×1+×=9+18=27. 8.已知数列{an}中,a1=1且=+(n∈N*),则a10=________. 答案 解析 由已知得=+(10-1)×=1+3=4, 故a10=. 9.设数列{an}的通项公式为an=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________. 答案 130 解析 由an=2n-10(n∈N*)知{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0,得n≥5,∴当n≤5时,an≤0,当n>5时,an>0,∴|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+110=130. 10.设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有=,则+的值为________. 答案 解析 ∵{an},{bn}为等差数列, ∴+=+==. ∵====, ∴+=. 11.在等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式; (2)若数列{an}的前k项和Sk=-35,求k的值. 解 (1)设等差数列{an}的公差为d, 则an=a1+(n-1)d. 由a1=1,a3=-3,可得1+2d=-3,解得d=-2. 从而an=1+(n-1)×(-2)=3-2n. (2)由(1)可知an=3-2n, 所以Sn==2n-n2. 由Sk=-35,可得2k-k2=-35, 即k2-2k-35=0,解得k=7或k=-5. 又k∈N*,故k=7. 12.若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=. (1)求证:数列是等差数列; (2)求数列{an}的通项公式. (1)证明 当n≥2时,由an+2SnSn-1=0, 得Sn-Sn-1=-2SnSn-1,所以-=2, 又==2, 故是首项为2,公差为2的等差数列. (2)解 由(1)可得=2n,∴Sn=. 当n≥2时, an=Sn-Sn-1=-= =-. 当n=1时,a1=不适合上式. 故an= *13.已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=a+n-4(n∈N*). (1)求证:数列{an}为等差数列; (2)求数列{an}的通项公式. (1)证明 当n=1时,有2a1=a+1-4, 即a-2a1-3=0, 解得a1=3(a1=-1舍去). 当n≥2时,有2Sn-1=a+n-5, 又2Sn=a+n-4, 两式相减得2an=a-a+1, 即a-2an+1=a,也即(an-1)2=a, 因此an-1=an-1或an-1=-an-1. 若an-1=-an-1,则an+an-1=1. 而a1=3, 所以a2=-2,这与数列{an}的各项均为正数相矛盾, 所以an-1=an-1,即an-an-1=1, 因此数列{an}是首项为3,公差为1的等差数列. (2)解 由(1)知a1=3,d=1, 所以数列{an}的通项公式an=3+(n-1)×1=n+2, 即an=n+2.查看更多