- 2021-04-15 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下册数学教案6-1 第3课时 平方根 1 人教版
第3课时 平方根 1.了解平方根的概念,会用根号表示一个数的平方根;(重点) 2.了解开平方与平方是互逆运算,会用开平方运算求非负数的平方根.(难点) [来源:学+科+网] [来源:学科网] 一、情境导入 填空:(1)3的平方等于9,那么9的算术平方根就是________; (2)的平方等于,那么的算术平方根就是________; (3)展厅的地面为正方形,其面积49平方米,则边长为________米. 还有平方等于9,,49的其他数吗? 二、合作探究 探究点一:平方根的概念及性质 【类型一】 求一个数的平方根 求下列各数的平方根: (1)1;(2)0.0001;(3)(-4)2;(4)10-6;(5). 解析:把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根. 解:(1)∵1=,(±)2=,∴1的平方根为±,即±=±; (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±=±0.01;[来源:Z|xx|k.Com] (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±=±4; (4)∵(±10-3)2=10-6,∴10-6的平方根是±10-3,即±=±10-3; (5)∵(±3)2=9=,∴的平方根是±3. 方法总结:正确理解平方根的概念,明确是求哪一个数的平方根.如(5)中是求9的平方根. 【类型二】 利用平方根的性质求值[来源:Zxxk.Com] 一个正数的两个平方根分别是2a+1和a-4,求这个数. 解析:因为一个正数的平方根有两个,且它们互为相反数,所以2a+1和a-4互为相反数,根据互为相反数的两个数的和为0列方程求解. 解:由于一个正数的两个平方根是2a+1和a-4,则有2a+1+a-4=0,即3a-3=0,解得a=1.所以这个数为(2a+1)2=(2+1)2=9. 方法总结:一个正数的平方根有两个,它们互为相反数,即它们的和为零. [来源:Zxxk.Com] 探究点二:开平方及相关运算 求下列各式中x的值: (1)x2=361; (2)81x2-49=0; (3)49(x2+1)=50; (4)(3x-1)2=(-5)2. 解析:若x2=a(a≥0),则x=±,先把各题化为x2=a的形式,再求x.其中(4)中可将(3x-1)看作一个整体,先通过开平方求出这个整体的值,然后解方程求出x. 解:(1)∵x2=361,∴开平方得x=±=±19; (2)整理81x2-49=0,得x2=,∴开平方得x=±=±; (3)整理49(x2+1)=50,得x2=,∴开平方得x=±=±; (4)∵(3x-1)2=(-5)2,∴开平方得3x-1=±5.当3x-1=5时,x=2;当3x-1=-5时,x=-.综上所述,x=2或-. 方法总结:利用平方根的定义进行开平方解方程,从而求出未知数的值.一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根. 三、板书设计 1.平方根的概念:若x2=a,则x叫a的平方根,x=±. 2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根. 3.开平方及相关运算:求一个数a的平方根的运算叫做开平方,其中a叫做被开方数.开平方与平方互为逆运算. 为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断地扩大为原来的2倍、3倍、n倍,引导学生进行交流、讨论与探索,从中感受学习平方根的必要性查看更多