- 2021-04-13 发布 |
- 37.5 KB |
- 28页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018年吉林省中考数学试卷
2018年吉林省中考数学试卷 一、选择题(共6小题,每小题2分,满分12分) 1.(2.00分)计算(﹣1)×(﹣2)的结果是( ) A.2 B.1 C.﹣2 D.﹣3 2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是( ) A. B. C. D. 3.(2.00分)下列计算结果为a6的是( ) A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3 4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( ) A.10° B.20° C.50° D.70° 5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为( ) A.12 B.13 C.14 D.15 6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( ) A. B. C. D. 二、填空题(共8小题,每小题3分,满分24分) 7.(3.00分)计算:= . 8.(3.00分)买单价3元的圆珠笔m支,应付 元. 9.(3.00分)若a+b=4,ab=1,则a2b+ab2= . 10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为 . 11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为 . 12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= m. 13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 度. 14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为 度. 三、解答题(共12小题,满分84分) 15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下: 原式=a2+2ab﹣(a2﹣b2) (第一步) =a2+2ab﹣a2﹣b2(第二步) =2ab﹣b2 (第三步) (1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程. 16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF. 17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率. 18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式. 19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程. 根据以上信息,解答下列问题. (1)冰冰同学所列方程中的x表示 ,庆庆同学所列方程中的y表示 ; (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题. 20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动: 第一步:点D绕点A顺时针旋转180°得到点D1; 第二步:点D1绕点B顺时针旋转90°得到点D2; 第三步:点D2绕点C顺时针旋转90°回到点D. (1)请用圆规画出点D→D1→D2→D经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π). 21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度. 数学活动方案 活动时间:2018年4月2日 活动地点:学校操场 填表人:林平 课题 测量学校旗杆的高度 活动目的 运用所学数学知识及方法解决实际问题 方案示意图 测量步骤 (1)用 测得∠ADE=α; (2)用 测得BC=a米,CD=b米. 计算过程 22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据: 从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据: 表一 质量(g) 频数 种类 393≤x<396 396≤x<399 399≤x<402 402≤x<405 405≤x<408 408≤x<411 甲 3 0 0 1 3 乙 0 1 5 0 分析数据: 表二 种类 平均数 中位数 众数 方差 甲 401.5 400 36.85 乙 400.8 402 8.56 得出结论: 包装机分装情况比较好的是 (填甲或乙),说明你的理由. 23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示 (1)家与图书馆之间的路程为 m,小玲步行的速度为 m/min; (2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间. 24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F. (1)求证:四边形ADEF为平行四边形; (2)当点D为AB中点时,▱ADEF的形状为 ; (3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由. 25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2) (1)当PQ⊥AB时,x= ; (2)求y关于x的函数解析式,并写出x的取值范围; (3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值. 26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E. (1)当a=﹣1时,抛物线顶点D的坐标为 ,OE= ; (2)OE的长是否与a值有关,说明你的理由; (3)设∠DEO=β,45°≤β≤60°,求a的取值范围; (4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围. 2018年吉林省中考数学试卷 参考答案与试题解析 一、选择题(共6小题,每小题2分,满分12分) 1.(2.00分)计算(﹣1)×(﹣2)的结果是( ) A.2 B.1 C.﹣2 D.﹣3 【分析】根据“两数相乘,同号得正”即可求出结论. 【解答】解:(﹣1)×(﹣2)=2. 故选:A. 2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是( ) A. B. C. D. 【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形. 故选:B. 3.(2.00分)下列计算结果为a6的是( ) A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3 【分析】 分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得. 【解答】解:A、a2•a3=a5,此选项不符合题意; B、a12÷a2=a10,此选项不符合题意; C、(a2)3=a6,此选项符合题意; D、(﹣a2)3=﹣a6,此选项不符合题意; 故选:C. 4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( ) A.10° B.20° C.50° D.70° 【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数. 【解答】解:如图. ∵∠AOC=∠2=50°时,OA∥b, ∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°. 故选:B. 5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为( ) A.12 B.13 C.14 D.15 【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案. 【解答】解:∵D为BC的中点,且BC=6, ∴BD=BC=3, 由折叠性质知NA=ND, 则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12, 故选:A. 6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( ) A. B. C. D. 【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【解答】解:由题意可得, , 故选:D. 二、填空题(共8小题,每小题3分,满分24分) 7.(3.00分)计算:= 4 . 【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果. 【解答】解:∵42=16, ∴=4, 故答案为4. 8.(3.00分)买单价3元的圆珠笔m支,应付 3m 元. 【分析】根据总价=单价×数量列出代数式. 【解答】解:依题意得:3m. 故答案是:3m. 9.(3.00分)若a+b=4,ab=1,则a2b+ab2= 4 . 【分析】直接利用提取公因式法分解因式,再把已知代入求出答案. 【解答】解:∵a+b=4,ab=1, ∴a2b+ab2=ab(a+b) =1×4 =4. 故答案为:4. 10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为 ﹣1 . 【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可. 【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根, ∴△=b2﹣4ac=0, 即:22﹣4(﹣m)=0, 解得:m=﹣1, 故选答案为﹣1. 11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为 (﹣1,0) . 【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可. 【解答】解:∵点A,B的坐标分别为(4,0),(0,3), ∴OA=4,OB=3, 在Rt△AOB中,由勾股定理得:AB==5, ∴AC=AB=5, ∴OC=5﹣4=1, ∴点C的坐标为(﹣1,0), 故答案为:(﹣1,0), 12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= 100 m. 【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB. 【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°, ∴△ABD∽△ECD, ∴,, 解得:AB=(米). 故答案为:100. 13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 29 度. 【分析】根据∠BDC=∠BOC求解即可; 【解答】解:连接OC. ∵=, ∴∠AOB=∠BOC=58°, ∴∠BDC=∠BOC=29°, 故答案为29. 14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为 36 度. 【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可. 【解答】解: ∵△ABC中,AB=AC, ∴∠B=∠C, ∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=, ∴∠A:∠B=1:2, 即5∠A=180°, ∴∠A=36°, 故答案为:36. 三、解答题(共12小题,满分84分) 15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下: 原式=a2+2ab﹣(a2﹣b2) (第一步) =a2+2ab﹣a2﹣b2(第二步) =2ab﹣b2 (第三步) (1)该同学解答过程从第 二 步开始出错,错误原因是 去括号时没有变号 ; (2)写出此题正确的解答过程. 【分析】先计算乘法,然后计算减法. 【解答】解:(1)该同学解答过程从第 二步开始出错,错误原因是 去括号时没有变号; 故答案是:二;去括号时没有变号; (2)原式=a2+2ab﹣(a2﹣b2) =a2+2ab﹣a2+b2 =2ab+b2. 1 6.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF. 【分析】根据正方形的性质,利用SAS即可证明; 【解答】证明:∵四边形ABCD是正方形, ∴AB=BC,∠ABE=∠BCF=90°, 在△ABE和△BCF中, , ∴△ABE≌△BCF. 17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率. 【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率. 【解答】解:列表得: A B C A (A,A) (B,A) (C,A) B (A,B) (B,B) (C,B) C (A,C) (B,C) (C,C) 由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种, 所以该同学两次摸出的小球所标字母相同的概率==. 18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式. 【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案. 【解答】解:∵把x=1代入y=x+2得:y=3, 即P点的坐标是(1,3), 把P点的坐标代入y=得:k=3, 即反比例函数的解析式是y=. 19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程. 根据以上信息,解答下列问题. (1)冰冰同学所列方程中的x表示 甲队每天修路的长度 ,庆庆同学所列方程中的y表示 甲队修路400米所需时间 ; (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题. 【分析】(1)根据两人的方程思路,可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间; (2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米; (3)选择两个方程中的一个,解之即可得出结论. 【解答】解:(1)∵冰冰是根据时间相等列出的分式方程, ∴x表示甲队每天修路的长度; ∵庆庆是根据乙队每天比甲队多修20米列出的分式方程, ∴y表示甲队修路400米所需时间. 故答案为:甲队每天修路的长度;甲队修路400米所需时间. (2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间; 庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可). (3)选冰冰的方程:=, 去分母,得:400x+8000=600x, 移项,x的系数化为1,得:x=40, 检验:当x=40时,x、x+20均不为零, ∴x=40. 答:甲队每天修路的长度为40米. 选庆庆的方程:﹣=20, 去分母,得:600﹣400=20y, 将y的系数化为1,得:y=10, 经验:当y=10时,分母y不为0, ∴y=10, ∴=40. 答:甲队每天修路的长度为40米. 20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动: 第一步:点D绕点A顺时针旋转180°得到点D1; 第二步:点D1绕点B顺时针旋转90°得到点D2; 第三步:点D2绕点C顺时针旋转90°回到点D. (1)请用圆规画出点D→D1→D2→D经过的路径; (2)所画图形是 轴对称 对称图形; (3)求所画图形的周长(结果保留π). 【分析】(1)利用旋转变换的性质画出图象即可; (2)根据轴对称图形的定义即可判断; (3)利用弧长公式计算即可; 【解答】解:(1)点D→D1→D2→D经过的路径如图所示: (2)观察图象可知图象是轴对称图形, 故答案为轴对称. (3)周长=4×=8π. 21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度. 数学活动方案 活动时间:2018年4月2日 活动地点:学校操场 填表人:林平 课题 测量学校旗杆的高度 活动目的 运用所学数学知识及方法解决实际问题 方案示意图 测量步骤 (1)用 测角仪 测得∠ADE=α; (2)用 皮尺 测得BC=a米,CD=b米. 计算过程 【分析】在Rt△ADE中,求出AE,再利用AB=AE+BE计算即可; 【解答】解:(1)用 测角仪测得∠ADE=α; (2)用 皮尺测得BC=a米,CD=b米. (3)计算过程:∵四边形BCDE是矩形, ∴DE=BC=a,BE=CD=b, 在Rt△ADE中,AE=ED•tanα=a•tanα, ∴AB=AE+EB=a•tanα+b. 22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据: 从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据: 表一 质量(g) 频数 种类 393≤x<396 396≤x<399 399≤x<402 402≤x<405 405≤x<408 408≤x<411 甲 3 0 3 0 1 3 乙 0 3 1 5 1 0 分析数据: 表二 种类 平均数 中位数 众数 方差 甲 401.5 400 400 36.85 乙 400.8 402 402 8.56 得出结论: 包装机分装情况比较好的是 乙 (填甲或乙),说明你的理由. 【分析】整理数据:由题干中的数据结合表中范围确定个数即可得; 分析数据:根据众数和中位数的定义求解可得; 得出结论:根据方差的意义,方差小分装质量较为稳定即可得. 【解答】解:整理数据: 表一 质量(g) 频数 种类 393≤x<396 396≤x<399 399≤x<402 402≤x<405 405≤x<408 408≤x<411 甲 3 0 3 0 1 3 乙 0 3 1 5 1 0 分析数据: 将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410, ∴甲组数据的中位数为400; 乙组数据中402出现次数最多,有3次, ∴乙组数据的众数为402; 表二 种类 平均数 中位数 众数 方差 甲 401.5 400 400 36.85 乙 400.8 402 402 8.56 得出结论: 表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定, 所以包装机分装情况比较好的是乙. 故答案为:乙. 23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示 (1)家与图书馆之间的路程为 4000 m,小玲步行的速度为 200 m/min; (2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间. 【分析】(1)认真分析图象得到路程与速度数据; (2)采用方程思想列出小东离家路程y与时间x之间的函数关系式; (3)两人相遇实际上是函数图象求交点. 【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象 则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s 故答案为:4000,200 (2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时, ∴他离家的路程y=4000﹣300x 自变量x的范围为0≤x≤ (3)由图象可知,两人相遇是在小玲改变速度之前 ∴4000﹣300x=200x 解得x=8 ∴两人相遇时间为第8分钟. 24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F. (1)求证:四边形ADEF为平行四边形; (2)当点D为AB中点时,▱ADEF的形状为 菱形 ; (3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由. 【分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明; (2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明; (3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明. 【解答】(1)证明:∵DE∥AC, ∴∠BDE=∠A, ∵∠DEF=∠A, ∴∠DEF=∠BDE, ∴AD∥EF,又∵DE∥AC, ∴四边形ADEF为平行四边形; (2)解:▱ADEF的形状为菱形, 理由如下:∵点D为AB中点, ∴AD=AB, ∵DE∥AC,点D为AB中点, ∴DE=AC, ∵AB=AC, ∴AD=DE, ∴平行四边形ADEF为菱形, 故答案为:菱形; (3)四边形AEGF是矩形, 理由如下:由(1)得,四边形ADEF为平行四边形, ∴AF∥DE,AF=DE, ∵EG=DE, ∴AF∥DE,AF=GE, ∴四边形AEGF是平行四边形, ∵AD=AG,EG=DE, ∴AE⊥EG, ∴四边形AEGF是矩形. 25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2) (1)当PQ⊥AB时,x= s ; (2)求y关于x的函数解析式,并写出x的取值范围; (3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值. 【分析】(1)当PQ⊥AB时,BQ=2PB,由此构建方程即可解决问题; (2)分三种情形分别求解即可解决问题; (3)分两种情形分别求解即可解决问题; 【解答】解:(1)当PQ⊥AB时,BQ=2PB, ∴2x=2(2﹣2x), ∴x=s. 故答案为s. (2)①如图1中,当0<x≤时,重叠部分是四边形PQMN. y=2x×x=2x2. ②如图②中,当<x≤1时,重叠部分是四边形PQEN. y=(2﹣x+2tx×x=x2+x ③如图3中,当1<x<2时,重叠部分是四边形PNEQ. y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4; 综上所述,y=. (3)①如图4中,当直线AM经过BC中点E时,满足条件. 则有:tan∠EAB=tan∠QPB, ∴=, 解得x=. ②如图5中,当直线AM经过CD的中点E时,满足条件. 此时tan∠DEA=tan∠QPB, ∴=, 解得x=, 综上所述,当x=s或时,直线AM将矩形ABCD的面积分成1:3两部分. 26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E. (1)当a=﹣1时,抛物线顶点D的坐标为 (﹣1,4) ,OE= 3 ; (2)OE的长是否与a值有关,说明你的理由; (3)设∠DEO=β,45°≤β≤60°,求a的取值范围; (4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围. 【分析】(1)求出直线CD的解析式即可解决问题; (2)利用参数a,求出直线CD的解析式求出点E坐标即可判断; (3)求出落在特殊情形下的a的值即可判断; (4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题; 【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3, ∴顶点D(﹣1,4),C(0,3), ∴直线CD的解析式为y=﹣x+3, ∴E(3,0), ∴OE=3, 故答案为(﹣1,4),3. (2)结论:OE的长与a值无关. 理由:∵y=ax2+2ax﹣3a, ∴C(0,﹣3a),D(﹣1,﹣4a), ∴直线CD的解析式为y=ax﹣3a, 当y=0时,x=3, ∴E(3,0), ∴OE=3, ∴OE的长与a值无关. (3)当β=45°时,OC=OE=3, ∴﹣3a=3, ∴a=﹣1, 当β=60°时,在Rt△OCE中,OC=OE=3, ∴﹣3a=3, ∴a=﹣, ∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1. (4)如图,作PM⊥对称轴于M,PN⊥AB于N. ∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°, ∴∠DPM=∠EPN, ∴△DPM≌△EPN, ∴PM=PN,PM=EN, ∵D(﹣1,﹣4a),E(3,0), ∴EN=4+n=3﹣m, ∴n=﹣m﹣1, 当顶点D在x轴上时,P(1,﹣2),此时m的值1, ∵抛物线的顶点在第二象限, ∴m<1. ∴n=﹣m﹣1(m<1). 查看更多