高考数学专题复习:课时达标检测(五十二) 统 计
课时达标检测(五十二) 统 计
[练基础小题——强化运算能力]
1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )
A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法
解析:选B 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.
2.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=( )
A.660 B.720 C.780 D.800
解析:选B 由已知条件,抽样比为=,
从而=,解得n=720.
3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A.93 B.123 C.137 D.167
解析:选C 初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.
4.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为( )
A.①③ B.①④ C.②③ D.②④
解析:选B ∵甲==29,
乙==30,
∴甲<乙;
又s==,s==2,
∴s甲>s乙.故可判断结论①④正确.
5.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.
(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.
解析:(1)由频率分布直方图总面积为1,得(0.001 2+0.002 4×2+0.003 6+x+0.006 0)×50=1,解得x=0.004 4;
(2)用电量在[100,250)内的频率为(0.003 6+0.004 4+0.006 0)×50=0.7,故户数为100×0.7=70.
答案:(1)0.004 4 (2)70
[练常考题点——检验高考能力]
一、选择题
1.从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为甲、乙,中位数分别为m甲、m乙,则( )
A.甲<乙,m甲>m乙 B.甲<乙,m甲
乙,m甲>m乙 D.甲>乙,m甲b>c B.b>c>a
C.c>a>b D.c>b>a
解析:选D 依题意,a=(15+17+14+10+15+17+17+16+14+12)×=14.7.这些数据由小到大依次是10,12,14,14,15,15,16,17,17,17,因此b=15,c=17,c>b>a.
5.(2016·九江二模)已知一组数据x1,x2,…,xn的方差为2,若数据ax1+b,ax2+b,…,axn+b(a>0)的方差为8,则a的值为( )
A.1 B. C.2 D.4
解析:选C 根据方差的性质可知,a2×2=8,故a=2.
6.(2017·邢台模拟)样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为( )
A. B. C. D.2
解析:选D 依题意得m=5×1-(0+1+2+3)=-1,样本方差s2=(12+02+12+22+22)=2,即所求的样本方差为2.
二、填空题
7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+y的值为________.
解析:由甲班学生成绩的众数是85,知x=5,由乙班学生成绩的中位数是83,得y=3.所以x+y=8.
答案:8
8.某公司300名员工2016年年薪情况的频率分布直方图如图所示,由图可知,员工中年薪在1.4~1.6万元的共有________人.
解析:由频率分布直方图知年薪低于1.4万元或者高于1.6万元的频率为(0.2+0.8+0.8+1.0+1.0)×0.2=0.76,因此,年薪在1.4~1.6万元间的频率为1-0.76=0.24,所以300名员工中年薪在1.4~1.6万元间的员工人数为300×0.24=72.
答案:72
9.某学校共有教师300人,其中中级教师有192人,高级教师与初级教师的人数比为5∶4.为了解教师专业发展需求,现采用分层抽样的方法进行调查,在抽取的样本中有中级教师64人,则该样本中的高级教师人数为________.
解析:由题意可知,高级教师有(300-192)×=60人,抽样比k===.故该样本中高级教师的人数为60×=20.
答案:20
10.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:
学生
1号
2号
3号
4号
5号
甲班
6
7
7
8
7
乙班
6
7
6
7
9
若以上两组数据的方差中较小的一个为s2,则s2=________.
解析:
由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,方差s2=(1+0+0+1+0)=.
答案:
三、解答题
11.为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单位:小时)如下:
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283
(1)完成下面的频率分布表,并作出频率分布直方图;
分组
频数
频率
频率/组距
[180,200)
[200,220)
[220,240)
[240,260)
[260,280)
[280,300)
[300,320)
[320,340]
合计
0.05
(2)估计8 万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
解:(1)频率分布表及频率分布直方图如下所示:
分组
频数
频率
频率/组距
[180,200)
1
0.05
0.002 5
[200,220)
1
0.05
0.002 5
[220,240)
2
0.10
0.005 0
[240,260)
3
0.15
0.007 5
[260,280)
4
0.20
0.010 0
[280,300)
6
0.30
0.015 0
[300,320)
2
0.10
0.005 0
[320,340]
1
0.05
0.002 5
合计
20
1.00
0.05
(2)由题意可得8×(0.30+0.10+0.05)=3.6,所以估计8万台电风扇中有3.6万台无故障连续使用时限不低于280小时.
(3)由频率分布直方图可知
=190×0.05+210×0.05+230×0.10+250×0.15+270×0.20+290×0.30+310×0.10+330×0.05=269(小时),所以样本的平均无故障连续使用时限为269小时.
12.随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:
(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;
(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:
①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?
②如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?说明理由.
解:(1)依题意可得,使用A款订餐软件的50个商家的“平均送达时间”的众数为55.
使用A款订餐软件的50个商家的“平均送达时间”的平均数为15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.
(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.
故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.
②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,
所以选B款订餐软件.