- 2021-04-12 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
第十二章全等三角形小结导学案
第十二章全等三角形小结导学案 一、学习目标: 1. 复习全等形与全等三角形的概念、全等三角形的判定定理,以及角平分线的作图方法和角平分线的性质等知识,建立知识系统; 2. 使学生总结寻找全等三角形及其全等条件的方法、归纳常见辅助线的作法,使学生掌握分析问题的方法,提升解题能力。 二、学习重点、难点: 学习重点:将所学知识科学地组织起来,将其纳入已有的知识结构中。 学习难点:提升分析问题、解决问题的能力。 三、本章知识结构图: 。 四、回顾与思考: 1、请你举一些生活中的全等形。 2、 全等三角形的概念及性质; 3、 三角形全等的判定; 4、 角平分线的性质及判定 5、你能举例说明证明一个几何命题的一般过程吗? 知识点一:证明三角形全等的思路 通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析: 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。 例1. 如图,四点共线,,,,。求证:。 5 思路分析:从结论入手,全等条件只有;由两边同时减去得到,又得到一个全等条件。还缺少一个全等条件,可以是,也可以是。 知识点二:构造全等三角形 例2. 如图,在中,是∠ABC的平分线,,垂足为。求证:。 思路分析:直接证明比较困难,我们可以间接证明,即找到,证明且。也可以看成将“转移”到。 。 例3. 如图,在中,,。为延长线上一点,点在上,,连接和。求证:。 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。以线段为边的绕点顺时针旋转到的位置,而线段正好是的边,故只要证明它们全等即可。 知识点三:常见辅助线的作法 1. 连接四边形的对角线 解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。 2. 作垂线,利用角平分线的知识 例5. 如图,分别是外角和的平分线,它们交于点。求证:为的平分线。 5 思路分析:要证明“为的平分线”,可以利用点到的距离相等来证明,故应过点向作垂线;另一方面,为了利用已知条件“分别是和的平分线”,也需要作出点到两外角两边的距离。 例6. 如图,是的边上的点,且,,是的中线。求证:。 思路分析:要证明“”,不妨构造出一条等于的线段,然后证其等于。因此,延长至,使。 解题后的思考:三角形中倍长中线,可以构造全等三角形,继而得出一些线段和角相等,甚至可以证明两条直线平行。 4. “截长补短”构造全等三角形 例7. 如图,在中,,,为上任意一点。求证:。 5 思路分析:欲证,不难想到利用三角形中三边的不等关系来证明。由于结论中是差,故用两边之差小于第三边来证明,从而想到构造线段。而构造可以采用“截长”和“补短”两种方法。 解答过程:法一: 在上截取,连接 在与中 (SAS) 在中, ,即AB-AC>PB-PC。 法二: 延长至,使,连接 在与中 (SAS) 在中, 。 5 5查看更多