- 2021-05-26 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教B版复数的几何意义课时作业
2020届一轮复习人教B版 复数的几何意义 课时作业 一、选择题 1.设z=a+bi对应的点在虚轴右侧,则( ) A.a>0,b>0 B.a>0,b<0 C.b>0,a∈R D.a>0,b∈R 解析:选D 复数对应的点在虚轴右侧,则该复数的实部大于零,虚部可为任意实数. 2.已知复数z=a+bi(i为虚数单位),集合A=,B=.若a,b∈A∩B,则|z|等于( ) A.1 B. C.2 D.4 解析:选B 因为A∩B=,所以a,b∈,所以|z|==. 3.在复平面内,O为原点,向量对应的复数为-1+2i,若点A关于直线y=-x的对称点为点B,则向量对应的复数为( ) A.-2-i B.-2+i C.1+2i D.-1+2i 解析:选B 因为复数-1+2i对应的点为A(-1,2),点A关于直线y=-x的对称点为B(-2,1),所以对应的复数为-2+i. 4.当<m<1时,复数z=(3m-2)+(m-1)i在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:选D 由查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档