输入关键词搜索文档
【数学】2020届一轮复习北师大版不等式的性质与一元二次不等式学案
2021-02-26 发布
|
37.5 KB
|
10页
还剩
7
页未读,
点击继续阅读
申明敬告:
本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习北师大版不等式的性质与一元二次不等式学案
第章 不等式、推理与证明 第一节 不等式的性质与一元二次不等式 [考纲传真] 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.会从实际问题的情境中抽象出一元二次不等式模型.3.通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 1.两个实数比较大小的方法 (1)作差法 (2)作商法 2.不等式的性质 (1)对称性:a>b⇔b
b,b>c⇒a>c;(单向性) (3)可加性:a>b⇔a+c>b+c;(双向性) (4)加法法则:a>b,c>d⇒a+c>b+d;(单向性) (5)可乘性:a>b,c>0⇒ac>bc;(单向性) a>b,c<0⇒ac
b>0,c>d>0⇒ac>bd;(单向性) (7)乘方法则:a>b>0⇒an>bn(n≥2,n∈N);(单向性) (8)开方法则:a>b>0⇒>(n≥2,n∈N);(单向性) 3.一元二次不等式与相应的二次函数及一元二次方程的关系 判别式Δ=b2-4ac Δ>0 Δ=0 Δ<0 二次函数y=ax2+bx+c (a>0)的图像 一元二次方程ax2+bx+c=0 (a>0)的根 有两相异实根x1,x2(x1
0(a>0)的解集 {x|x
x2} {x|x≠x1} R ax2+bx+c<0 (a>0)的解集 {x|x1
b⇔ac2>bc2. ( ) (2)a>b>0,c>d>0⇒>. ( ) (3)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0. ( ) (4)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R. ( ) [答案] (1)× (2)√ (3)√ (4)× 2.(教材改编)下列四个结论,正确的是( ) ①a>b,c
b-d; ②a>b>0,c
bd; ③a>b>0⇒>; ④a>b>0⇒>. A.①② B.②③ C.①④ D.①③ D [利用不等式的同向可加性可知①正确;对于②,根据不等式的性质可知ac
b>0可知a2>b2>0,所以<,所以④不正确.] 3.(教材改编)设a,b,c∈R,且a>b,则( ) A.ac>bc B.< C.a2>b2 D.a3>b3 D [取a=1,b=-2,c=-1,排除A,B,C,故选D.] 4.(教材改编)不等式(x+1)(x+2)<0的解集为( ) A.{x|-2<x<-1} B.{x|-1<x<2} C.{x|x<-2或x>1} D.{x|x<-1或x>2} A [方程(x+1)(x+2)=0的两根为x=-2或x=-1,则不等式(x+1)(x+2)<0的解集为{x|-2<x<-1},故选A.] 5.不等式x2+ax+4≤0的解集不是空集,则实数a的取值范围是________. (-∞,-4]∪[4,+∞) [由题意知Δ=a2-42≥0,解得a≥4或a≤-4.] 不等式的性质及应用 1.若a>b>0,c<d<0,则一定有( ) A.> B.< C.> D.< B [由c<d<0得<<0,则->->0, ∴->-, ∴<,故选B.] 2.(2016·北京高考)已知x,y∈R,且x>y>0,则( ) A.->0 B.sin x-sin y>0 C.- <0 D.ln x+ln y>0 C [函数y=在(0,+∞)上为减函数,∴当x>y>0时, <,即- <0,故C正确;函数y=在(0,+∞)上为减函数,由x>y>0⇒<⇒-<0,故A错误;函数y=sin x在(0,+∞)上不单调,当x>y>0时,不能比较sin x与sin y的大小,故B错误;x>y>0⇒xy>0ln(xy)>0 ln x+ln y>0,故D错误.] 3.若a=20.6,b=logπ3,c=log2,则( ) A.a>b>c B.b>a>c C.c>a>b D.b>c>a A [因为a=20.6>20=1,又logπ1<logπ3<logππ,所以0<b<1,c=log2sin<log21=0,于是a>b>c.故选A.] 4.已知角α,β满足-<α-β<,0<α+β<π,则3α-β的范围是________. (-π,2π) [设3α-β=m(α-β)+n(α+β),则 解得 从而3α-β=2(α-β)+(α+β), 又-π<2(α-β)<π,0<α+β<π, ∴-π<2(α-β)+(α+β)<2π.] [规律方法] 利用不等式的性质判断正误及求代数式的范围的方法 (1)利用不等式的范围判断正误时,常用两种方法: 一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案. (2)比较大小常用的方法 ①作差(商)法:作差(商)⇒变形⇒判断, ②构造函数法:利用函数的单调性比较大小, ③中间量法:利用中间量法比较两式大小,一般选取0或1作为中间量. (3)由a
0的解集为________.(用区间表示) (1) (2)(-4,1) [(1)方程2x2-x-3=0的两根为x1=-1,x2=,则不等式2x2-x-3>0的解集为. (2)由-x2-3x+4>0得x2+3x-4<0,解得-4
0的解集为(-4,1).] ►考法2 含参数的一元二次不等式 【例2】 (1)解关于x的不等式:x2-(a+1)x+a<0. [解] 原不等式可化为(x-a)(x-1)<0, 当a>1时,原不等式的解集为(1,a); 当a=1时,原不等式的解集为∅; 当a<1时,原不等式的解集为(a,1). (2)解关于x的不等式:ax2-(a+1)x+1<0. [解] 若a=0,原不等式等价于-x+1<0,解得x>1. 若a<0,原不等式等价于(x-1)>0, 解得x<或x>1. 若a>0,原不等式等价于(x-1)<0. ①当a=1时,=1,(x-1)<0无解; ②当a>1时,<1,解(x-1)<0,得<x<1; ③当0<a<1时,>1,解(x-1)<0,得1<x<. 综上所述,当a<0时,解集为; 当a=0时,解集为{x|x>1}; 当0<a<1时,解集为; 当a=1时,解集为∅; 当a>1时,解集为. [规律方法] 1.解一元二次不等式的步骤: (1)使一端为0且把二次项系数化为正数; (2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 2.解含参数的一元二次不等式的步骤: (1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式; (2)判断方程的根的个数,讨论判别式Δ与0的关系; (3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式. (1)已知不等式ax2-bx-1>0的解集是,则不等式x2-bx-a≥0的解集是( ) A.{x|2
0的解集是x
查看更多
相关文章
高考第一轮复习数学51向量的概念向
高考第一轮复习数学134函数的连续
您可能关注的文档
精选关于迎接少代会争做新时代好队员学习心得体会五篇
2015届高考数学二轮复习专题训练试题:三角恒等变换(1)
高考语文《考试说明》18个文言虚词
2020-2021学年公立学校初一新生学业水平英语质量检测及答案 2套
2014年中考英语复习阅读理解训练(15)
酒店前台工作总结模板汇编8篇
2018-2019学年安徽省合肥市第六中学高一上学期第一次段考地理试题
八年级下册数学教案 22-4 第1课时 矩形的性质 冀教版
苏教小学语文一上《12怀素写字》PPT课件 (6)
数学理卷·2018届福建省漳州市高三下学期第二次调研测试(3月)(2018
当前文档收益归属上传用户
下载本文档
下一篇