中考冲刺数学专题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考冲刺数学专题

‎2011中考冲刺数学专题6——综合型问题 例题1 (2010四川攀枝花)如图,在矩形ABCD中,AB=6,AD=2,点P是边BC上的动点(点P不与点B、C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点。设CP=x, △PQR与矩形ABCD重叠部分的面积为y。‎ ‎(1)求∠CPQ的度数。‎ ‎(2)当x取何值时,点R落在矩形ABCD的边AB上?‎ ‎(3)当点R在矩形ABCD外部时,求y与x的函数关系式。并求此时函数值y的取值范围。‎ 例题3 (2010 浙江义乌)如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F.‎ ‎(1)如图2,当BP=BA时,∠EBF=   °,猜想∠QFC= °;‎ ‎(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;‎ 图1‎ A C B E Q F P 图2‎ A B E Q P F C 图1‎ A C B E Q F P ‎(3)已知线段AB=,设BP=,点Q到射线BC的距离为y,求y关于的函数关系式.‎ 例题4 (2010 重庆)已知:如图(1),在直角坐标系xOy中,边长为2的等边△的顶点在第一象限,顶点在轴的正半轴上. 另一等腰△的顶点在第四象限,,.现有两动点,分别从,两点同时出发,点以每秒1个单位的速度沿向点运动,点以每秒3个单位的速度沿运动,当其中一个点到达终点时,另一个点也随即停止.‎ ‎(1)求在运动过程中形成的△的面积与运动的时 间之间的函数关系式,并写出自变量t的取值范围;‎ ‎(2)在等边△的边上(点除外)存在点,使得△为等腰三角形,请直接写出所有符合条件的点D的坐标;‎ ‎(3)如图(2),现有,其两边分别与, 交于点,,连接.将绕着 点旋转(旋转角),使得,始终在边和边上.试判断在这一过程中,△的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.‎ 例题5 (2010甘肃兰州) 如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)‎ ‎(1)当x取何值时,该抛物线的最大值是多少?‎ ‎(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). ‎ ‎① 当时,判断点P是否在直线ME上,并说明理由;‎ ‎② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.‎ 图1 图2‎ 例题7 (2010 四川成都)在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线.‎ ‎(1)求直线及抛物线的函数表达式;‎ ‎(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;‎ ‎(3)设⊙Q的半径为l,圆心在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为,圆心在抛物线上运动,则当取何值时,⊙Q与两坐轴同时相切?‎ 解答:(1)∵沿轴向下平移3个单位后恰好经过原点,‎ ‎ ∴,。‎ ‎ 将 代入,得。解得。‎ ‎ ∴直线AC的函数表达式为。‎ ‎ ∵抛物线的对称轴是直线 ‎∴解得 ‎∴抛物线的函数表达式为。‎ ‎(2)如图,过点B作BD⊥AC于点D。‎ ‎ ‎ ‎∵,‎ ‎∴ ‎ ‎∴。‎ 过点P作PE⊥x轴于点E,‎ ‎∵PE∥CO,∴△APE∽△ACO,‎ ‎∴,‎ ‎∴‎ ‎∴,解得 ‎∴点P的坐标为 ‎(3)(Ⅰ)假设⊙Q在运动过程中,存在与坐标轴相切的情况。‎ ‎ 设点Q的坐标为。‎ ① 当⊙Q与y轴相切时,有,即。‎ 当时,得,∴‎ 当时,得,∴‎ ② 当⊙Q与x轴相切时,有,即 当时,得,即,解得,∴‎ 当时,得,即,解得,∴,。‎ 综上所述,存在符合条件的⊙Q,其圆心Q的坐标分别为,,,,。‎ ‎(Ⅱ)设点Q的坐标为。‎ 当⊙Q与两坐标轴同时相切时,有。‎ 由,得,即,‎ ‎∵△=‎ ‎∴此方程无解。‎ 由,得,即,‎ 解得 ‎∴当⊙Q的半径时,⊙Q与两坐标轴同时相切。‎ 例题8 (2010湖南常德)如图, 已知抛物线与轴交于A (-4,0) 和B(1,0)两点,与轴交于C点.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)设E是线段AB上的动点,作EF//AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;‎ ‎(3)若P为抛物线上A、C两点间的一个动点,过P作轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.‎ 解答:(1)由二次函数与轴交于、两点可得:‎ ‎       解得: ‎ ‎    故所求二次函数的解析式为. ‎ ‎(2)∵S△CEF=2 S△BEF, ∴ ‎ ‎ ∵EF//AC, ∴,‎ ‎ ∴△BEF~△BAC, ‎ ‎∴得 ‎ 故E点的坐标为(,0). ‎ ‎   (3)解法一:由抛物线与轴的交点为,则点的坐标为(0,-2).若设直线的解析式为,则有 解得: ‎ 故直线的解析式为. ‎ 若设点的坐标为,又点是过点所作轴的平行线与直线的交点,则点的坐标为(.则有:‎ ‎       =‎ ‎=‎ 即当时,线段取大值,此时点的坐标为(-2,-3)‎ 解法二:延长交轴于点,则.要使线段最长,则只须△的面积取大值时即可. ‎ 设点坐标为(,则有: ‎ ‎    ‎ ‎   =‎ ‎  =‎ ‎ =‎ ‎=‎ ‎= =-‎ 即时,△的面积取大值,此时线段最长,则点坐标为(-2,-3) ‎ ‎【技巧提炼】‎ 解数学综合题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。‎ ‎1、 以坐标系为桥梁,运用数形结合思想 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。‎ ‎2、 以直线或抛物线知识为载体,运用函数与方程思想 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。‎ ‎3、 利用条件或结论的多变性,运用分类讨论的思想 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。‎ ‎4、 综合多个知识点,运用等价转换思想 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。‎ ‎【体验中考】‎ ‎1.(2010 福建德化)已知:如图,点是正方形的对角线上的一个动点(、除外),作于点,作于点,设正方形的边长为,矩形的周长为,在下列图象中,大致表示与之间的函数关系的是( ). ‎ x y ‎0‎ A x y ‎0‎ D x y ‎0‎ B y x ‎0‎ C P D A B C C E F ‎2.(2010 四川南充)如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是(  ). l1‎ l2‎ A B M N O ‎1‎ (A) (B)若MN与⊙O相切,则 (C)若∠MON=90°,则MN与⊙O相切 (D)l1和l2的距离为2 ‎ ‎3.(2010湖北鄂州)如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上, 点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是( )‎ A.   B.  C.4   D.6‎ ‎4.(2010湖北宜昌)如图,在圆心角为90°的扇形MNK中,动点P从点M出发,沿MNKM运动,最后回到点M的位置。设点P运动的路程为x,P与M两点之间的距离为y,其图象可能是( )。‎ ‎5.(2010湖南怀化)图9是二次函数的图象,其顶点坐标为M(1,-4).‎ ‎(1)求出图象与轴的交点A,B的坐标; ‎ ‎(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的 坐标;若不存在,请说明理由;‎ ‎(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,‎ 得到一个新的图象,请你结合这个新的图象回答:当直线与此 图象有两个公共点时,的取值范围.‎ ‎ ‎ ‎6.(2010湖北鄂州)如图,在直角坐标系中,A(-1,0),B(0,2),一动点P沿过B点且垂直于AB的射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交与点C.‎ ‎(1)求点C的坐标.‎ ‎(2)求过点A、B、C三点的抛物线的解析式.‎ ‎(3)若P点开始运动时,Q点也同时从C出发,以P点相同的速度沿x轴负方向向点A运动,t秒后,以P、Q、C为顶点的三角形为等腰三角形.(点P到点C时停止运动,点Q也同时停止运动)求t的值.‎ ‎(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标.‎ ‎7.(2010湖北荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.‎ ‎(1)直接写出D点的坐标;‎ ‎(2)设OE=x,AF=y,试确定y与x之间的函数关系;‎ ‎(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△,求△与五边形OEFBC重叠部分的面积.‎ ‎8.(2010湖北省咸宁)如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒). 全品中考网 ‎(1)当时,求线段的长;‎ ‎(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;‎ ‎(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.‎ A B C D ‎(备用图1)‎ A B C D ‎(备用图2)‎ Q A B C D l M P E ‎9.(2010江苏扬州)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.‎ ‎(1)求线段AD的长;‎ ‎(2)若EF⊥AB,当点E在线段AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围)②当x取何值时,y有最大值?并求其最大值;‎ ‎(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.‎ 答案 ‎1.【答案】A ‎ ‎2.【答案】B ‎ ‎3.【答案】A ‎ ‎4.【答案】B ‎ ‎5.【答案】(1) 因为M(1,-4) 是二次函数的顶点坐标,‎ 所以 ‎ 令解之得.‎ ‎∴A,B两点的坐标分别为A(-1,0),B(3,0)‎ ‎(2) 在二次函数的图象上存在点P,使 设则,‎ 又,‎ ‎∴‎ ‎∵二次函数的最小值为-4,∴.‎ 当时,.‎ 故P点坐标为(-2,5)或(4,5)‎ ‎(3)如图1,当直线经过A点时,可得 ‎ 当直线经过B点时,可得 由图可知符合题意的的取值范围为 ‎6.【答案】‎ ‎(1)点C的坐标是(4,0);‎ ‎(2)设过点A、B、C三点的抛物线的解析式为y=ax2+bx+c(a≠0),将点A、B、C三点的坐标代入得:‎ 解得,∴抛物线的解析式是:y= x2+x+2.‎ ‎(3)设P、Q的运动时间为t秒,则BP=t,CQ=t.以P、Q、C为顶点的三角形为等腰三角形,可分三种情况讨论.‎ ‎①若CQ=PC,如图所示,则PC= CQ=BP=t.∴有2t=BC=,∴t=.‎ ‎②若PQ=QC,如图所示,过点Q作DQ⊥BC交CB于点D,则有CD=PD.由△ABC∽△QDC,可得出PD=CD=,∴,解得t=.‎ ‎③若PQ=PC,如图所示,过点P作PE⊥AC交AC于点E,则EC=QE=PC,∴t=(-t),解得t=.‎ ‎(4)当CQ=PC时,由(3)知t=,∴点P的坐标是(2,1),∴直线OP的解析式是:y=x,因而有x =x2+x+2,即x2-2x-4=0,解得x=1±,∴直线OP与抛物线的交点坐标为(1+,)和(1-,).‎ ‎7.【答案】(1)D点的坐标是.‎ ‎(2)连结OD,如图(1),‎ 由结论(1)知:D在∠COA的平分线上,则 ‎∠DOE=∠COD=45°,又在梯形DOAB中,∠BAO=45°,∴OD=AB=3‎ 由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45°‎ ‎∴∠1=∠2, ∴△ODE∽△AEF ‎∴,即:‎ ‎∴y与x的解析式为:‎ ‎(3)当△AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况.‎ ① 当EF=AF时,如图(2).‎ ‎∠FAE=∠FEA=∠DEF=45°,‎ ‎∴△AEF为等腰直角三角形.D在A’E上(A’E⊥OA),‎ B在A’F上(A’F⊥EF)‎ ‎∴△A’EF与五边形OEFBC重叠的面积为 四边形EFBD的面积.‎ ‎∵‎ ‎∴‎ ‎∴‎ ‎∴(也可用)‎ ‎ ‎ ‎②当EF=AE时,如图(3),‎ 此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.‎ ‎∠DEF=∠EFA=45°, DE∥AB , 又DB∥EA ‎∴四边形DEAB是平行四边形 ‎∴AE=DB=‎ ‎∴‎ ‎③当AF=AE时,如图(4),四边形AEA’F为菱形且△A’EF在五边形OEFBC内.‎ ‎ ∴此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.‎ ‎ ‎ 由(2)知△ODE∽△AEF,则OD=OE=3‎ ‎ ∴AE=AF=OA-OE=‎ ‎ 过F作FH⊥AE于H,则 ‎∴‎ 综上所述,△A’EF与五边形OEFBC重叠部分的面积为或1或 ‎8.【答案】(1)过点C作于F,则四边形AFCD为矩形.‎ ‎∴,.‎ Q A B C D l M P E F 此时,Rt△AQM∽Rt△ACF.‎ ‎∴.‎ 即,∴.‎ ‎(2)∵为锐角,故有两种情况:‎ ‎①当时,点P与点E重合.‎ A B C D ‎(备用图1)‎ Q P E l M 此时,即,∴.‎ ‎②当时,如备用图1,‎ 此时Rt△PEQ∽Rt△QMA,∴.‎ 由(1)知,,‎ 而,‎ ‎∴. ∴.‎ 综上所述,或.‎ ‎(3)为定值.‎ 当>2时,如备用图2,‎ A B C D ‎(备用图2)‎ M Q R F P ‎.‎ 由(1)得,.‎ ‎∴. ∴.‎ ‎∴. ∴.‎ ‎∴四边形AMQP为矩形. ∴∥.‎ ‎∴△CRQ∽△CAB.‎ ‎∴.‎ ‎9.【答案】(1)∵AC=3,BC=4‎ ‎∴AB=5‎ ‎∵AC·BC=AB·CD,‎ ‎∴CD=,AD=‎ ‎ (2)①当0<x≤时 ‎ ∵EF∥CD ‎∴△AEF∽△ADC ‎∴‎ 即EF=x ‎∴y=·x·x=‎ ‎ 当<x≤5时 ‎ 易得△BEF∽△BDC,同理可求EF=(5—x)‎ ‎ ∴y=·x·(5—x)=≤‎ ‎②当0<x≤时,y随x的增大而增大.‎ y=≤,即当x=时,y最大值为 ‎ 当<x≤5时,‎ ‎ ∵‎ ‎ ∴当时,y的最大值为 ‎ ∵<‎ ‎ ∴当时,y的最大值为 ‎(3)假设存在 ‎ 当0<x≤5时,AF=6—x ‎ ∴0<6—x<3‎ ‎ ∴3<x<6‎ ‎ ∴3<x≤5‎ ‎ 作FG⊥AB与点G ‎ 由△AFG∽△ACD可得 ‎ ∴,即FG=‎ ‎ ∴x·=‎ ‎ ∴=3,即2x2-12x+5=0‎ ‎ 解之得x1=,x2=‎ ‎ ∵3<x1≤5‎ ‎ ∴x1=符合题意 ‎ ∵x2=<3‎ ‎ ∴x2不合题意,应舍去 ‎ ∴存在这样的直线EF,此时,x=‎
查看更多

相关文章

您可能关注的文档