- 2021-05-06 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
立体几何高考题文科
4.(10安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点, (Ⅰ)求证:FH∥平面EDB;(Ⅱ)求证:AC⊥平面EDB; (Ⅲ)求VB—DEF 5.(10江苏本小题满分14分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。 (1) 求证:PC⊥BC; (2) 求点A到平面PBC的距离。 7.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。 (1) 求证:CE⊥平面PAD; (11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积 8.(11安徽19)(本小题满分13分) 如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。 (Ⅰ)证明直线;(Ⅱ)求棱锥的体积. 9.(11重庆20)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分) 如题(20)图,在四面体中,平面ABC⊥平面, (Ⅰ)求四面体ABCD的体积(Ⅱ)求二面角C-AB-D的平面角的正切值。 10.(11新课标18)(本小题满分12分) 如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD. (I)证明:; (II)设PD=AD=1,求棱锥D-PBC的高. 11.(11天津17)(本小题满分13分)如图,在四棱锥中,底面为 平行四边形,,,为中点, 平面,,为中点. (Ⅰ)证明://平面; (Ⅱ)证明:平面; 13.如图,已知空间四边形中,,是的中点。 求证:(1)平面CDE; A E D B C (1) 平面平面。 14、正方体中,求证:(1);(2). A1 A B1 B C1 C D1 D G E F 15、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C; (2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD. 18、(本小题满分13分) 如图5所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=AB,PH为△PAD边上的高。 (1)证明:PH⊥平面ABCD; (2)若PH=1,AD=,FC=1,求三棱锥E-BCF的体积; (3)证明:EF⊥平面PAB。查看更多