- 2021-04-27 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版九年级数学上册教案:25_2 列举法求概率
1 课题: 25.2 列举法求概率 教学目标: 知识与技能目标 学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。 过程与方法目标 经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生 的概率。渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。 情感与态度目标 通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的 应用价值,培养积极思维的学习习惯。 教学重点: 习运用列表法或树形图法计算事件的概率。 教学难点: 能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。 教学过程 1.创设情景,发现新知 教材是通过的例 5、例 6 来介绍列表法和树形图法的。 例 5(教材:同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是 9; (3) 至少有一个骰子的点数为 2。 这个例题难度较大,事件可能出现的结果有 36 种。若首先就拿这个例题给学生讲解, 大多数学生理解起来会比较困难。所以在这里,我将新课的引入方式改为了一个有实际背景 的转盘游戏(前一课已有例2作基础)。 (1)创设情景 引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B 两个带指针的转盘 分别被分成三个面积相等的扇形,转盘 A 上的数字分别是 1,6,8,转盘 B 上的数字分别是 4,5,7(两个转盘除表面数字不同外,其他完全相同)。每次选择 2 名同学分别拨动 A、B 2 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演 一个节目(若箭头恰好停留在分界线上,则重转一次)。作为游戏者,你会选择哪个装置呢? 并请说明理由。 【设计意图】 选用这个引例,是基于以下考虑:以贴近学生生活的联欢晚会为背景, 创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境。 (2)学生分组讨论,探索交流 在这个环节里,首先要求学生分组讨论,探索交流。然后引导学生将实际问题转化为数 学问题,即: “停止转动后,哪个转盘指针所指数字较大的可能性更大呢?” 由于事件的随机性,我们必须考虑事件发生概率的大小。此时我首先引导学生观看转盘 动画,同学们会发现这个游戏涉及 A、B 两转盘, 即涉及 2 个因素,与前一课所讲授单转盘 概率问题(教材 P148 例 2)相比,可能产生的结果数目增多了,列举时很容易造成重复或 遗漏。怎样避免这个问题呢? 实际上,可以将这个游戏分两步进行。 于是,指导学生构造表格 (3)指导学生构造表格 A B 4 5 7 1 6 8 首先考虑转动 A 盘:指针可能指向 1,6,8 三个数字中的任意一个,可能出现的结果就 会有 3 个。接着考虑转动 B 盘:当 A 盘指针指向 1 时,B 盘指针可能指向 4、5、7 三个数字 中的任意一个,这是列举法的简单情况。当 A 盘指针指向 6 或 8 时,B 盘指针同样可能指向 1 6 8 A 4 5 7 B 图 2 联欢晚会游戏转盘 3 4、5、7 三个数字中的任意一个。一共会产生 9 种不同的结果。 【设计意图】 这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。 (4)学生独立填写表格,通过观察与计算,得出结论(即列表法) A B 4 5 7 1 (1,4) (1,5) (1,7) 6 (6,4) (6,5) (6,7) 8 (8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于 B 盘数字的结果共有 5 种。 ∴P(A 数较大)= 9 5 , P(B 数较大)= 9 4 . ∴P(A 数较大)> P(B 数较大) ∴选择 A 装置的获胜可能性较大。 在学生填写表格过程中,注意向学生强调数对的有序性。 由于游戏是分两步进行的,我们也可用其他的方法来列举。即先转动A盘,可能出现 1, 6,8 三种结果;第二步考虑转动B盘,可能出现 4,5,7 三种结果。 (5)解法二: 由图知:可能的结果为: (1,4),(1,5),(1,7), (6,4),(6,5),( 6,7), (8,4),(8,5),( 8,7)。共计 9 种。 1 6 8 开始 A 装置 4 5 7 4 5 7 4 5 7 B 装置 4 ∴P(A 数较大)= 9 5 , P(B 数较大)= 9 4 . ∴P(A 数较大)> P(B 数较大) ∴选择 A 装置的获胜可能性较大。 然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像 一棵树,所以称为树形图(在幻灯片上放映)。列表和树形图是列举法求概率的两种常用的 方法。 【设计意图】自然地学生感染了分类计数和分步计数思想。 2.自主分析,再探新知 通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练 掌握这两种方法,我选用了下列两道例题(本节教材 P151—P152 的例 5 和例 6)。 例 1:同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是 9; (3) 至少有一个骰子的点数为 2。 例 1 是教材上一道“掷骰子”的问题,有了引例作基础,学生不难发现:引例涉及两个 转盘,这里涉及两个骰子,实质都是涉及两个因素。于是,学生通过类比列出下列表。 第 2 个 第 1 个 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 由上表可以看出,同时掷两个骰子,可能出现的结果有 36 个,它们出现的可能性相等。 由所列表格可以发现: 5 (1)满足两个骰子的点数相同(记为事件 A)的结果有 6 个,即(1,1),(2,2),(3, 3),( 4,4),(5,5),(6,6),所以 P(A)= 36 6 = 6 1 。 [满足条件的结果在表格的对角线上] (2)满足两个骰子的点数的和是 9(记为事件 B)的结果有 4 个,即(3,6),(4,5), (5,4),( 6,3),所以 P(B)= 36 4 = 9 1 。 [满足条件的结果在(3,6)和(6,3)所在的斜线上] (3)至少有一个骰子的点数为 2(记为事件 C)的结果有 11 个,所以 P(C)= 36 11 。 [满足条件的结果在数字 2 所在行和 2 所在的列上] 接着,引导学生进行题后小结: 当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。运用列 表法求概率的步骤如下: ①列表 ; ②通过表格计数,确定公式 P(A)= n m 中 m 和 n 的值; ③利用公式 P(A)= 计算事件的概率。 分析到这里,我会问学生:“例 1 题目中的“掷两个骰子”改为“掷三个骰子”,还可以 使用列表法来做吗?”由此引出下一个例题。 例 2: 甲口袋中装有 2 个相同的球,它们分别写有字母 A 和 B;乙口袋中 3 个相同的球, 它们分别写有字母 C、D 和 E;丙口袋中 2 个相同的球,它们分别写有字母 H 和 I。从三个口 袋中各随机地取出 1 个球。 (1)取出的三个球上恰好有 1 个、2 个和 3 个元音字母的概率分别为多少? (2)取出的三个球上全是辅音字母的概率是多少? 例 2 与前面两题比较,有所不同:要从三个袋子里摸球,即涉及到 3 个因素。此时同学 们会发现用列表法就不太方便,可以尝试树形图法。 6 本游戏可分三步进行。分步画图和分类排列相关的结论是解题的关键。 从图形上可以看出所有可能出现的结果共有 12 个,即: (幻灯片上用颜色区分) 这些结果出现的可能性相等。 (1)只有一个元音字母的结果(黄色)有 5 个,即 ACH,ADH,BCI,BDI,BEH,所以 12 5P (一个元音) ; 有两个元音的结果(白色)有 4 个,即 ACI,ADI,AEH,BEI,所以 3 1 12 4P )( 两个元音 ; 全部为元音字母的结果(绿色)只有 1 个,即 AEI ,所以 12 1P )( 三个元音 。 (2)全是辅音字母的结果(红色)共有 2 个,即 BCH,BDH,所以 6 1 12 2P )( 三个辅音 。 通过例 2 的解答,很容易得出题后小结: 当一次试验要涉及 3 个或更多的因素时,通常采用“画树形图”。运用树形图法 求概率的步骤如下:(幻灯片) ①画树形图 ; ②列出结果,确定公式 P(A)= n m 中 m 和 n 的值; ③利用公式 P(A)= 计算事件概率。 接着我向学生提问:到现在为止,我们所学过的用列举法求概率分为哪几种情况? 列 A C H A C I A D H A D I A E H A E I B C H B D H B D I B E H B E I B C I A C D E H I H I H I B C D E H I H I H I 甲 乙 丙 7 表法和画树形图法求概率有什么优越性?什么时候使用“列表法”方便,什么时候使用“树 形图法”更好呢? 【设计意图】 通过对上述问题的思考,可以加深学生对新方法的理解,更好的认识到 列表法和画树形图法求概率的优越性在于能够直观、快捷、准确地获取所需信息,有利于学 生根据实际情况选择正确的方法。 3.应用新知,深化拓展 为了检验学生对列表法和画树形图法的掌握情况,提高应用所学知识解决问题的能力, 在此我选择了教材 P154 课后练习作为随堂练习。 (1)经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能 性大小相同。三辆汽车经过这个十字路口,求下列事件的概率: ①三辆车全部继续前行; ②两辆车向右转,一辆车向左转; ③至少有两辆车向左转。 [随堂练习(1)是一道与实际生活相关的交通问题,可用树形图法来解决。] (2)在 6 张卡片上分别写有 1——6 的整数,随机地抽取一张后放回,再随机地抽取一 张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少? 通过解答随堂练习(2), 学生会发现列出的表格和例 1 的表格完全一样。不同的是:变 换了实际背景,设置的问题也不一样。这时,我提出:我们是否可以根据这个表格再编一道 用列举法求概率的题目来呢? 为了进一步拓展思维,我向学生提出了这样一个问题,供学生课后思考: 在前面的引例中,转盘的游戏规则是不公平的,你能把它改成一个公平的游戏吗? 【设计意图】 以上问题的提出和解决有利于学生发现数学问题的本质,做到举一反三, 融会贯通。 4.归纳总结,形成能力 我将引导学生从知识、方法、情感三方面来谈一谈这节课的收获。要求每个学生在组内 交流,派小组代表发言。 【设计意图】 通过这个环节,可以提高学生概括能力、表达能力,有助于学生全面地 了解自己的学习过程,感受自己的成长与进步,增强自信,也为教师全面了解学生的学习状 8 况、因材施教提供了重要依据。 5.布置作业,巩固提高 考虑到学生的个体差异,为促使每一个学生得到不同的发展,同时促进学生对自己的学 习进行反思,在第五个环节“布置作业,巩固提高”里作如下安排: (1)必做题:书本 3, 4,5 (2)选做题: ①请设计一个游戏,并用列举法计算游戏者获胜的概率。 ②研究性课题:通过调查学校周围道路的交通状况,为交通部门提出合理的建议等。 【设计意图】 通过教学实践作业和社会实践活动,引导学生灵活运用所学知识,让学生 把动脑、动口、动手三者结合起来,启发学生的创造性思维,培养协作精神和科学的态度。查看更多