- 2021-04-21 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学找规律题
中考数学探索题训练—找规律 一 序数与数据之间的规律 1. )先找规律,再填数: 2、观察下面的变形规律: =1-; =-;=-;…… 解答下面的问题: (1)若n为正整数,请你猜想= ; (2)证明你猜想的结论; (3)求和:+++…+ . 3. (2011湖南益阳,16,8分)观察下列算式: ① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1 ④ …… (1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来; (3)你认为(2)中所写出的式子一定成立吗?并说明理由. 4.(2011广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答. (1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数; - 12 - (2)用含n的代数式表示:第n行的第一个数是 ,最后一个数是 ,第n行共有 个数; (3)求第n行各数之和. 5.已知:,,,…, 观察上面的计算过程,寻找规律并计算 . 小结:多观察,分析变化与不变化 2、几何变化类 1. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是 ▲ . 2. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示) 第1个图形 第 2 个图形 第3个图形 第 4 个图形 第 18题图 3. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。 - 12 - 4、(2011年北京四中中考模拟19)(本小题满分6分) 观察下面的点阵图,探究其中的规律。 摆第1个“小屋子”需要5个点, 摆第2个“小屋子”需要 个点, 摆第3个“小屋子”需要 个点? (1)、摆第10个这样的“小屋子”需要多少个点? (2)、写出摆第n个这样的“小屋子”需要的总点数,S与n的关系式。 5.(2011年广东省澄海实验学校模拟)根据图中箭头的指向的规律,从2007到2008再到2009,箭头的方向是以下图示中的( ) 9 0 1 2 5 6 10 8 7 4 3 … D C A B 小结:观察分析整体与局部,变化与不变化 3、公式变化类 1.(2010广东肇庆)观察下列单项式:a,-2a2,4a3,-8a4,16a5,…,按此规律第n个单项式是______.(n是正整数) 2.(2010辽宁丹东市)已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是 . 第15题图 3.(2010 浙江衢州)已知a≠0,,,,…,, 则 (用含a的代数式表示). 4.(2010 四川泸州)在反比例函数的图象上,有一系列点、、…、、,若的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2. 现分别过点、、…、 - 12 - 、作轴与轴的垂线段,构成若干个矩形如图8所示,将图中阴影部分的面积从左到右依次记为、、、,则________________,+++…+_________________.(用n的代数式表示) 等差 1.(2010湖北荆州)用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是 . 2.(2010鄂尔多斯)如图,用小棒摆下面的图形,图形(1)需要3 根小棒,图形(2)需要3 根小棒,……照这样的规律继续摆下去,第n个图形需要 根小棒(用含n的代数式表示) 3.(2010湖北恩施自治州)如图3,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果层六边形点阵的总点数为331, 则等于 . 4、一列数是1,3,7,13,21,……请问第n个数是( ) 1.(09深圳 )观察下列各式:0,x,x2,2x3,3x4,5x5,8x6,…….试按此规律写出的第8个式子是_______。 2.(07年深圳 )邓老师设计了一个计算程序,输入和输出的数据如下表: - 12 - 输入数据 1 2 3 4 5 6 … 输出数据 … 那么,当输入数据是时,输出的数据是 . 3. 已知依据上述规律,则 . 4.观察下列算式,用你所发现的规律得出22010的末位数字是 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, A.2 B.4 C.6 D.8 5.如图6,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是=______________________。 …… 0 1 3 5 7 9 11 13 S1 S2 S3 S4 图6 (1) (2) (3) (4) …… 6.(深圳 如图6,,过上到点的距离分别为的点作的垂线与相交,得到并标出一组黑色梯形,它们的面积分别为.观察图中的规律, 求出第10个黑色梯形的面积 . 7.(08深圳中考)观察表一,寻找规律.表二、表三分别是从表一中截取的 一部分,其中a+b的值为_____________. 1 2 3 4 … 2 4 6 8 … 3 6 9 12 … 4 8 12 16 … … … … … … 20 24 25 b 12 15 a 表一 表二 表三 课外作业: 8、(2011深圳市中考模拟五)有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长为2、3、4……的等边三角形(如图所示), - 12 - 根据图形推断,每个等边三角形所用的等边三角形所用的卡片数S与边长n的关系式是 . 9、(2004•四川)(规律探究题)某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图,第2次把第1次铺的完全围起来,如图,第3次把第2次铺的完全围起来,如图;….依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块数 _________ . 10、(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形. …… y x O C1 B2 A2 C3 B1 A3 B3 A1 C2 (第16题图) 11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别 在直线(k>0)和x轴上, 已知点B1(1,1),B2(3,2), 则Bn的坐标是______________. x y O 12.如图,在一单位为1的方格纸上,△,△,△,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△的顶点坐标分别为 (2,0), (1,-1), (0,0),则依图中所示规律,的坐标为 . - 12 - 13、 如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0和1。如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。 2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。 14、小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入 … 1 2 3 4 5 … 输出 … … 那么,当输入数据是8时,输出的数据是( ) A、 B、 C、 D、 15、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子. 16、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n个小房子用了 块石子。 第4题 17、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗. 第7题图 18、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 - 12 - 个点,第n个图形中有 个点。 19、下面是按照一定规律画出的一列“树型”图: 经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”。 20、如图,都是由边长为1的正方体叠成的图形。例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。依此规律。则第(5)个图形的表面积 个平方单位。 (1) (2) (3) (4) ⑴ ⑵ ⑶ 21、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,…… 按这样的规律叠放下去, 第8个图中小立方体个数是 . 22、图1是棱长为a的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n层,第n层的小正方体的个数为s.解答下列问题: 图1 图2 图3 - 12 - (1)按照要求填表: n 1 2 3 4 … s 1 3 6 … (2)写出当n=10时,s= . 23、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有 个。 24、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案: ⑴ 第4个图案中有白色地面砖 块; ⑵ 第n个图案中有白色地面砖 块。 25、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分. 26. (2011四川内江,加试5,12分)同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)时,我们可以这样做: (1)观察并猜想: 12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2) 12+22+32=(1+0)×1+(1+1)×2+(1+2)×3 =1+0×1+2+1×2+3+2×3 - 12 - =(1+2+3)+(0×1+1×2+2×3) 12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+ =1+0×1+2+1×2+3+2×3+ =(1+2+3+4)+( ) …… (2)归纳结论: 12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+[1+(n—1)]n =1+0×1+2+1×2+3+2×3+…+n+(n一1)×n =( ) +[ ][来源:Zxxk.Com] = + =× (3)实践应用: 通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是 . - 12 - 【答案】(1+3)×4 4+3×4 0×1+1×2+2×3+3×4 1+2+3+…+n 0×1+1×2+2×3++…+(n-1)×n n(n+1)(n—1) 参考答案: 1、13 2、100 3、C 4、179 5、 3(n+1)-3+n(n+1)或(n+1)2+2n-1 6、(1)18、22 (2)4n+2 7、27 8、31,n2-n-1 9、80 10、1+3+5+7=42;1+3+5+7+9=52;1+3+5+……+2n-1=n2 11、 4n 12、90 13、C 14、64 15、(1)10 (2)1+2+3+……+n=n(n+1)/2 16、165 17、s=2n+1 18、4n+6 19、16,4n+4 20、125 21、(1)13、18;28、38;(2)5n+3,10n+8 22 、91 23、B 24、B 25、A 26、8n-6 27、(1)18 ;(2)4n+2 29、C 30、C 31、 36 32、A 33、C 35、15 ;2n-1 36、 2n2 37、后面、上面、左面 38、C 39、(1) (1,1),(3,1),(4,2),(4,4);(2) 28、 一个外星人 老人的脸 路灯 两朵鲜花 等式 同性相斥异性相吸 40、 34、 另外的两个略 - 12 - - 12 -查看更多