- 2021-04-21 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2016年高考数学(理科)真题分类汇编K单元 概率
数 学 K单元 概率 K1 随事件的概率 18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 0 1 2 3 4 ≥5 保费 0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数 0 1 2 3 4 ≥5 概率 0.30 0.15 0.20 0.20 0.10 0.05 (1)求一续保人本年度的保费高于基本保费的概率; (2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值. 18.解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1, 故P(A)=0.20+0.20+0.10+0.05=0.55. (2)设B表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3, 故P(B)=0.10+0.05=0.15. 又P(AB)=P(B), 故P(B|A)====, 因此所求概率为. (3)记续保人本年度的保费为X,则X的分布列为 X 0.85a a 1.25a 1.5a 1.75a 2a P 0.30 0.15 0.20 0.20 0.10 0.05 EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a. 因此续保人本年度的平均保费与基本保费的比值为1.23. K2 古典概型 7.K2、K4[2016·江苏卷] 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________. 7. [解析] 本题为古典概型,基本事件共有36个,点数之和大于等于10的有(4,6),(5,5),(5,6),(6,6),(6,5),(6,4),共计6个基本事件,故点数之和小于10的有30个基本事件,所求概率为. 14.F1,K2[2016·上海卷] 如图12所示,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0).任取不同的两点Ai,Aj,点P满足++=0,则点P 落在第一象限的概率是________. 图12 14. [解析] 共有C=28(个)基本事件,其中使点P落在第一象限的基本事件共有C+2=5(个),故所求概率为. K3 几何概型 4.K3[2016·全国卷Ⅰ] 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A. B. C. D. 4.B [解析] 由题意可知满足条件的时间段为7:50~8:00,8:20~8:30,共20分钟,故所求概率为=. 14.K3[2016·山东卷] 在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为________. 14. [解析] 若直线与圆相交,则<3,解得-查看更多