- 2021-04-19 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级数学上册第十一章三角形11-2与三角形有关的角11-2-2三角形的外角教案新版 人教版
11.2.2 三角形的外角 1.了解三角形的外角. 2.知道三角形的外角等于与它不相邻的两个内角的和. 3.学会运用简单的说理来计算三角形相关的角. 重点 三角形外角的性质. 难点 运用三角形外角性质进行有关计算时能准确地推理. 一、复习引入 什么是三角形的内角?它是由什么组成的? 三角形内角和定理的内容是什么? 教师提出问题,学生举手回答问题. 二、探究新知 1.探究三角形外角的概念. 教师布置学生自学教材第14页最后一段话的内容,然后完成以下问题: (1)举例说明什么是三角形的外角.(上黑板画图说明) (2)如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角? 2.探究三角形外角的性质. 老师布置学生自学教材第15页思考的内容,然后同学间进行交流、讨论,归纳三角形的外角有什么性质,并提出以下问题: 你能否用证明的方法说明你所归纳的性质? 学生归纳得出三角形外角的性质: 三角形的外角等于与它不相邻的两个内角的和 三、举例分析 例1 如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少? 教师出示教材例4,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角,然后师生共同写出规范的解答过程. 解:由三角形的一个外角等于与它不相邻的两个内角的和,得∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2. 所以∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3). 2 由∠1+∠2+∠3=180°,得∠BAE+∠CBF+∠ACD=2×180°=360°. 四、练习与小结 练习:教材练习. 教师布置练习,学生举手回答. 小结:谈谈你对三角形外角的认识. 教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面入手. 五、布置作业 习题11.2第5,6,8题,选做题:第11题. 通过三角形的内角和回顾引入,然后通过学生的预习,在他们的理解基础上,去学习三角形的外角的定义,这样能够加深他们对外角定义的理解,在探索三角形外角定理的时候,我也是采取了学生去探索的思想,让他们自己大胆猜想,然后同学们在老师的引导下去证明自己的猜想,这样以后才能运用自如. 2查看更多