- 2021-04-17 发布 |
- 37.5 KB |
- 85页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学第二轮复习专题10个
2018年中考数学第二轮专题复习 专题一 选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2013年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 (2013•陕西)根据表中一次函数的自变量x与函数y的对应值,可得p的值为( ) x -2 0 1 y 3 p 0 A.1 B.-1 C.3 D.-3 思路分析:设一次函数的解析式为y=kx+b(k≠0),再把x=-2,y=3;x=1时,y=0代入即可得出kb的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值. 解:一次函数的解析式为y=kx+b(k≠0), ∵x=-2时y=3;x=1时y=0, ∴, 解得, ∴一次函数的解析式为y=-x+1, ∴当x=0时,y=1,即p=1. 故选A. 点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式. 对应训练 1.(2013•安顺)若y=(a+1)xa2-2是反比例函数,则a的取值为( ) A.1 B.-l C.±l D.任意实数 1.A 考点二:筛选法(也叫排除法、淘汰法) 分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确. 例2 (2013•莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为( ) A. B. C. D. 思路分析:注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决. 解:∵等边三角形ABC的边长为3,N为AC的三等分点, ∴AN=1. ∴当点M位于点A处时,x=0,y=1. ①当动点M从A点出发到AM=1的过程中,y随x的增大而减小,故排除D; ②当动点M到达C点时,x=6,y=3-1=2,即此时y的值与点M在点A处时的值不相等.故排除A、C. 故选B. 点评:本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量,然后根据动点的行程判断y的变化情况. 对应训练 2.(2013•自贡)如图,已知A、B是反比例函数y= (k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( ) A. B. C. D. 2.A 考点三:逆推代入法 将选择支中给出的答案或其特殊值,代入题干逐一 去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度. 例3 (2013•邵阳)下列四个点中,在反比例函数y=−的图象上的是( ) A.(3,-2) B.(3,2) C.(2,3) D.(-2,-3) 思路分析:根据反比例函数中k=xy的特点进行解答即可. 解:A、∵3×(-2)=-6,∴此点在反比例函数的图象上,故本选项正确; B、∵3×2=6≠-6,∴此点不在反比例函数的图象上,故本选项错误; C、∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误; D、∵(-2)×(-3)=6≠-6,∴此点不在反比例函数的图象上,故本选项错误. 故选A. 点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数y= 中,k=xy为定值是解答此题的关键. 对应训练 3.(2013•重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的解析式为( ) A.y=2x B.y=-2x C.y=x D.y=− x 3.B 考点四:直观选择法 利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速. 例4 (2013•鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是( ) A. B. C. D. 思路分析:分三段考虑,①小烧杯未被注满,这段时间,浮子的高度快速增加;②小烧杯被注满,大烧杯内水面的高度还未达到小烧杯的高度,此时浮子高度不变;③大烧杯内的水面高于小烧杯,此时浮子高度缓慢增加. 解:①小烧杯未被注满,这段时间,浮子的高度快速增加; ②小烧杯被注满,大烧杯内水面的高度还未达到小烧杯的高度,此时浮子高度不变; ③大烧杯内的水面高于小烧杯,此时浮子高度缓慢增加. 结合图象可得B选项的图象符合. 故选B. 点评:本题考查了函数的图象,解答本题需要分段讨论,另外本题重要的一点在于:浮子始终保持在容器的正中间. 对应训练 4.(2013•巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是( ) A.B.C.D. 4.D 考点五:特征分析法 对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法 例5 (2013•三明)如图,已知直线y=mx与双曲线的一个交点坐标为(3,4),则它们的另一个交点坐标是( ) A.(-3,4) B.(-4,-3) C.(-3,-4) D.(4,3) 思路分析:反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称. 解:因为直线y=mx过原点,双曲线的两个分支关于原点对称, 所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(-3,-4). 故选:C. 点评:此题考查了函数交点的对称性,通过数形结合和中心对称的定义很容易解决. 对应训练 5.(2013•宁波)已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为 . 5.y=- 考点六:动手操作法 与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的. 例6 (2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( ) A. B. C. D. 思路分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来. 解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意; B、剪去阴影部分后,无法组成长方体,故此选项不合题意; C、剪去阴影部分后,能组成长方体,故此选项正确; D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意; 故选:C. 点评:此题主要考查了展开图折叠成几何体,培养了学生的动手操作能力和空间想象能力. 对应训练 6.(2013•菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为( ) A.15°或30° B.30°或45° C.45°或60° D.30°或60° 6.D 专题二 新定义型问题 一、中考专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力 二、解题策略和解法精讲 “新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移. 三、中考典例剖析 考点一:规律题型中的新定义 例1 (2013•湛江)阅读下面的材料,先完成阅读填空,再按要求答题: sin30°=,cos30°=,则sin230°+cos230°= 1 ;① sin45°=,cos45°=,则sin245°+cos245°= 1 ;② sin60°=,cos60°=,则sin260°+cos260°= 1 .③ … 观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= 1 .④ (1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想; (2)已知:∠A为锐角(cosA>0)且sinA=,求cosA. 思路分析:①②③将特殊角的三角函数值代入计算即可求出其值; ④由前面①②③的结论,即可猜想出:对任意锐角A,都有sin2A+cos2A=1; (1)如图,过点B作BD⊥AC于D,则∠ADB=90°. 利用锐角三角函数的定义得出sinA=,cosA=,则sin2A+cos2A=,再根据勾股定理得到BD2+AD2=AB2,从而证明sin2A+cos2A=1; (2)利用关系式sin2A+cos2A=1,结合已知条件cosA>0且sinA=,进行求解. 解:∵sin30°=,cos30°=, ∴sin230°+cos230°=()2+()2=+=1;① ∵sin45°=,cos45°=, ∴sin245°+cos245°=()2+()2=+=1;② ∵sin60°=,cos60°=, ∴sin260°+cos260°=()2+()2=+=1.③ 观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=1.④ (1)如图,过点B作BD⊥AC于D,则∠ADB=90°. ∵sinA=,cosA=, ∴sin2A+cos2A=()2+()2=, ∵∠ADB=90°, ∴BD2+AD2=AB2, ∴sin2A+cos2A=1. (2)∵sinA=,sin2A+cos2A=1,∠A为锐角, ∴cosA=. 点评:本题考查了同角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单. 对应训练 1.(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题: (1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:; (2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由; (3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究 的最大值. 2.(1)证明:如答图1所示,连接CO并延长,交AB于点E. ∵点O是△ABC的重心,∴CE是中线,点E是AB的中点. ∴DE是中位线, ∴DE∥AC,且DE=AC. ∵DE∥AC, ∴△AOC∽△DOE, ∴=2, ∵AD=AO+OD, ∴=. (2)答:点O是△ABC的重心. 证明:如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心. 由(1)可知,=, 而=, ∴点Q与点O重合(是同一个点), ∴点O是△ABC的重心. (3)解:如答图3所示,连接DG. 设S△GOD=S,由(1)知=,即OA=2OD, ∴S△AOG=2S,S△AGD=S△GOD+S△AGO=3S. 为简便起见,不妨设AG=1,BG=x,则S△BGD=3xS. ∴S△ABD=S△AGD+S△BGD=3S+3xS=(3x+3)S, ∴S△ABC=2S△ABD=(6x+6)S. 设OH=k•OG,由S△AGO=2S,得S△AOH=2kS, ∴S△AGH=S△AGO+S△AOH=(2k+2)S. ∴S四边形BCHG=S△ABC-S△AGH=(6x+6)S-(2k+2)S=(6x-2k+4)S. ∴== ① 如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE. ∵OF∥BC, ∴, ∴OF=CD=BC; ∵GE∥BC, ∴, ∴GE=; ∴=, ∴=. ∵OF∥GE, ∴, ∴, ∴k=,代入①式得: ==-x2+x+1=-(x-)2+, ∴当x=时,有最大值,最大值为. 考点二:运算题型中的新定义 例2 (2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。 (1)求(-2)⊕3的值; (2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来. 思路分析:(1)按照定义新运算a⊕b=a(a-b)+1,求解即可; (2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示. 解:(1)∵a⊕b=a(a-b)+1, ∴(-2)⊕3=-2(-2-3)+1=10+1=11; (2)∵3⊕x<13, ∴3(3-x)+1<13, 9-3x+1<13, -3x<3, x>-1. 在数轴上表示如下: 点评:本题考查了有理数的混合运算及一元一次不等式的解法,属于基础题,理解新定义法则是解题的关键. 对应训练 2.(2013•十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4. (1)如果[a]=-2,那么a的取值范围是 -2≤a<-1 . (2)如果[]=3,求满足条件的所有正整数x. 2.解:(1)∵[a]=-2, ∴a的取值范围是-2≤a<-1; (2)根据题意得: 3≤[]<4, 解得:5≤x<7, 则满足条件的所有正整数为5,6. 考点三:探索题型中的新定义 例3 (2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2 的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A.2 B.3 C.4 D.5 思路分析: “距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求. 解:如图, ∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上, 到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上, ∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个. 故选C. 点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键. 对应训练 3.(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”. (1)请用直尺和圆规画一个“好玩三角形”; (2)如图在Rt△ABC中,∠C=90°,tanA= ,求证:△ABC是“好玩三角形”; (3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s. ①当β=45°时,若△APQ是“好玩三角形”,试求的值; ②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围. (4)(本小题为选做题,作对另加2分,但全卷满分不超过150分) 依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1) 3.解:(1)如图1,①作一条线段AB, ②作线段AB的中点O, ③作线段OC,使OC=AB, ④连接AC、BC, ∴△ABC是所求作的三角形. (2)如图2,取AC的中点D,连接BD ∵∠C=90°,tanA=, ∴=, ∴设BC=x,则AC=2x, ∵D是AC的中点, ∴CD=AC=x ∴BD==2x, ∴AC=BD ∴△ABC是“好玩三角形”; (3)①如图3,当β=45°,点P在AB上时, ∴∠ABC=2β=90°, ∴△APQ是等腰直角三角形,不可能是“好玩三角形”, 当P在BC上时,连接AC交PQ于点E,延长AB交QP的延长线于点F, ∵PC=CQ, ∴∠CAB=∠ACP,∠AEF=∠CEP, ∴△AEF∽△CEP, ∴. ∵PE=CE, ∴. Ⅰ当底边PQ与它的中线AE相等时,即AE=PQ时, =2, ∴=, Ⅱ当腰AP与它的中线QM相等,即AP=QM时, 作QN⊥AP于N,如图4 ∴MN=AN=MP. ∴QN=MN, ∴tan∠APQ==, ∴tan∠APE==, ∴=+。 ②由①可知,当AE=PQ和AP=QM时,有且只有一个△APQ能成为“好玩三角形”, ∴<tanβ<2时,有且只有一个△APQ能成为“好玩三角形”. (4)由(3)可以知道0<tanβ<, 则在P、Q的运动过程中,使得△APQ成为“好玩三角形”的个数为2. 考点四:开放题型中的新定义 例4 (2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形. (1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线; (2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形; (3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数. 思路分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以; (2)根据扇形的性质弧上的点到顶点的距离相等,只要D在上任意一点构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形, (3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数. 解:(1)∵AD∥BC, ∴∠ABC+∠BAD=180°,∠ADB=∠DBC. ∵∠BAD=120°, ∴∠ABC=60°. ∵BD平分∠ABC, ∴∠ABD=∠DBC=30°, ∴∠ABD=∠ADB, ∴△ADB是等腰三角形. 在△BCD中,∠C=75°,∠DBC=30°, ∴∠BDC=∠C=75°, ∴△BCD为等腰三角形, ∴BD是梯形ABCD的和谐线; (2)由题意作图为:图2,图3 (3)∵AC是四边形ABCD的和谐线, ∴△ACD是等腰三角形. ∵AB=AD=BC, 如图4,当AD=AC时, ∴AB=AC=BC,∠ACD=∠ADC ∴△ABC是正三角形, ∴∠BAC=∠BCA=60°. ∵∠BAD=90°, ∴∠CAD=30°, ∴∠ACD=∠ADC=75°, ∴∠BCD=60°+75°=135°. 如图5,当AD=CD时, ∴AB=AD=BC=CD. ∵∠BAD=90°, ∴四边形ABCD是正方形, ∴∠BCD=90° 如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F, ∵AC=CD.CE⊥AD, ∴AE=AD,∠ACE=∠DCE. ∵∠BAD=∠AEF=∠BFE=90°, ∴四边形ABFE是矩形. ∴BF=AE. ∵AB=AD=BC, ∴BF=BC, ∴∠BCF=30°. ∵AB=BC, ∴∠ACB=∠BAC. ∵AB∥CE, ∴∠BAC=∠ACE, ∴∠ACB=∠ACE=∠BCF=15°, ∴∠BCD=15°×3=45°. 点评:本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键. 对应训练 4.(2013•常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=a+b-1(史称“皮克公式”). 小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形: 根据图中提供的信息填表: 格点多边形各边上的格点的个数 格点边多边形内部的格点个数 格点多边形的面积 多边形1 8 1 多边形2 7 3 … … … … 一般格点多边形 a b S 则S与a、b之间的关系为S= a+2(b-1) (用含a、b的代数式表示). 4.解:填表如下: 格点多边形各边上的格点的个数 格点边多边形内部的格点个数 格点多边形的面积 多边形1 8 1 8 多边形2 7 3 11 … … … … 一般格点多边形 a b S 则S与a、b之间的关系为S=a+2(b-1)(用含a、b的代数式表示). 考点五:阅读材料题型中的新定义 例5 (2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点( ) A.在同一条直线上 B.在同一条抛物线上 C.在同一反比例函数图象上 D.是同一个正方形的四个顶点 思路分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上. 解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2), 如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6), 那么C⊕D=(x3+x4)+(y3+y4), D⊕E=(x4+x5)+(y4+y5), E⊕F=(x5+x6)+(y5+y6), F⊕D=(x4+x6)+(y4+y6), 又∵C⊕D=D⊕E=E⊕F=F⊕D, ∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6), ∴x3+y3=x4+y4=x5+y5=x6+y6, 令x3+y3=x4+y4=x5+y5=x6+y6=k, 则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上, ∴互不重合的四点C,D,E,F在同一条直线上. 故选A. 点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度. 对应训练 5.(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形. (1)判断与操作: 如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由. (2)探究与计算: 已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值. (3)归纳与拓展: 已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果). 7.解:(1)矩形ABCD是3阶奇异矩形,裁剪线的示意图如下: (2)裁剪线的示意图如下: (3)b:c的值为, 规律如下:第4次操作前短边与长边之比为:; 第3次操作前短边与长边之比为:; 第2次操作前短边与长边之比为:; 第1次操作前短边与长边之比为:. 专题三 开放型问题 一、中考专题诠释 开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类. 二、解题策略与解法精讲 解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。 三、中考考点精讲 考点一:条件开放型 条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求. 例1 (2013•盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式: y=-x+3 .(填上一个答案即可) 思路分析:首先可以用待定系数法设此一次函数关系式是:y=kx+b(k≠0).根据已知条件确定k,b应满足的关系式,再根据条件进行分析即可. 解:设此一次函数关系式是:y=kx+b. 把x=0,y=3代入得:b=3, 又根据y随x的增大而减小,知:k<0. 故此题只要给定k一个负数,代入解出b值即可.如y=-x+3.(答案不唯一) 故答案是:y=-x+3. 点评:本题考查了一次函数的性质.掌握待定系数法,首先根据已知条件确定k,b应满足的关系式,再根据条件进行分析即可. 对应训练 1.(2013•达州)已知(x1,y1),(x2,y2)为反比例函数图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为 -1 .(只需写出符合条件的一个k的值) 1.-1 考点二:结论开放型: 给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍. 例2 (2013•常德)请写一个图象在第二、四象限的反比例函数解析式: . 思路分析:根据反比例函数的性质可得k<0,写一个k<0的反比例函数即可. 解:∵图象在第二、四象限, ∴y=-, 故答案为:y=-. 点评:此题主要考查了反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内. 对应训练 2.(2013•山西)四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息: 该班有50人参与了献爱心活动 .(只要与统计图中所提供的信息相符即可得分) 2.该班有50人参与了献爱心活动(答案不唯一) 考点三:条件和结论都开放的问题: 此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断. 例3 (2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C. (1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1 = S2+S3(用“>”、“=”、“<”填空); (2)写出如图中的三对相似三角形,并选择其中一对进行证明. 思路分析:(1)根据S1= S矩形BDEF,S2+S3= S矩形BDEF,即可得出答案. (2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可. 解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED, ∴S1=S矩形BDEF, ∴S2+S3=S矩形BDEF, ∴S1=S2+S3. (2)答:△BCD∽△CFB∽△DEC. 证明△BCD∽△DEC; 证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°, ∴∠EDC=∠ CBD, 又∵∠BCD=∠DEC=90°, ∴△BCD∽△DEC. 点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般. 对应训练 3.(2013•荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由. 3.解:△ACD≌△BCE. 证明如下∵∠ACB=∠DCE=90°, ∴∠ACB-∠DCB=∠DCE-∠DCB, 即∠ACD=∠BCE. ∵△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°, ∴CA=CB,CD=CE, 在△ACD和△BCE中, , ∴△ACD≌△BCE. 专题四 探究型问题 一、中考专题诠释 探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类. 二、解题策略与解法精讲 由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑: 1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律. 2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致. 3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果. 4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证. 以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用. 三、中考考点精讲 考点一:条件探索型: 此类问题结论明确,而需探究发现使结论成立的条件. 例1 (2013•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形. (1)连结BE,CD,求证:BE=CD; (2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′. ①当旋转角为 60 度时,边AD′落在AE上; ②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明. 思路分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证; (2)①求出∠DAE,即可得到旋转角度数; ②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等. 解答:(1)证明:∵△ABD和△ACE都是等边三角形. ∴AB=AD,AE=AC,∠BAD=∠CAE=60°, ∴∠BAD+∠DAE=∠CAE+∠DAE, 即∠BAE=∠DAC, 在△BAE和△DAC中, , ∴△BAE≌△DAC(SAS), ∴BE=CD; (2)解:①∵∠BAD=∠CAE=60°, ∴∠DAE=180°-60°×2=60°, ∵边AD′落在AE上, ∴旋转角=∠DAE=60°; ②当AC=2AB时,△BDD′与△CPD′全等. 理由如下:由旋转可知,AB′与AD重合, ∴AB=BD=DD′=AD′, ∴四边形ABDD′是菱形, ∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC, ∵△ACE是等边三角形, ∴AC=AE,∠ACE=60°, ∵AC=2AB, ∴AE=2AD′, ∴∠PCD′=∠ACD′=∠ACE=×60°=30°, 又∵DP∥BC, ∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°, 在△BDD′与△CPD′中, , ∴△BDD′≌△CPD′(ASA). 故答案为:60. 点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过. 对应训练 1.(2013•新疆)如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F. (1)求证:△AOE≌△COF; (2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由. 1.解:(1)证明:∵四边形ABCD是平行四边形, ∴AO=OC,AB∥CD. ∴∠E=∠F又∠AOE=∠COF. ∴△AOE≌△COF(ASA); (2)如图,连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形, 理由如下: 由(1)可知△AOE≌△COF, ∴OE=OF, ∵AO=CO, ∴四边形AECF是平行四边形, ∵EF=AC, ∴四边形AECF是矩形. 考点二:结论探究型: 此类问题给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论. 例2 (2013•牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下: 过点C作CE⊥CB于点C,与MN交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE. ∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC. 又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB. 又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB. (1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明. (2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD= 2 ,CB= +1 . 思路分析:(1)过点C作CE⊥CB于点C,与MN交于点E,证明△ACE≌△DCB,则△ECB为等腰直角三角形,据此即可得到BE=CB,根据BE=AB-AE即可证得; (2)过点B作BH⊥CD于点H,证明△BDH是等腰直角三角形,求得DH的长,在直角△BCH中,利用直角三角形中30°的锐角所对的直角边等于斜边的一半,即可求得. 解:(1)如图(2):AB-BD=CB. 证明:过点C作CE⊥CB于点C,与MN交于点E, ∵∠ACD=90°, ∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD, ∴∠BCD=∠ACE. ∵DB⊥MN, ∴∠CAE=90°-∠AFC,∠D=90°-∠BFD, ∵∠AFC=∠BFD, ∴∠CAE=∠D, 又∵AC=DC, ∴△ACE≌△DCB, ∴AE=DB,CE=CB, ∴△ECB为等腰直角三角形, ∴BE=CB. 又∵BE=AB-AE, ∴BE=AB-BD, ∴AB-BD=CB. 如图(3):BD-AB=CB. 证明:过点C作CE⊥CB于点C,与MN交于点E, ∵∠ACD=90°, ∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB, ∴∠BCD=∠ACE. ∵DB⊥MN, ∴∠CAE=90°-∠AFB,∠D=90°-∠CFD, ∵∠AFB=∠CFD, ∴∠CAE=∠D, 又∵AC=DC, ∴△ACE≌△DCB, ∴AE=DB,CE=CB, ∴△ECB为等腰直角三角形, ∴BE=CB. 又∵BE=AE-AB, ∴BE=BD-AB, ∴BD-AB=CB. (2)如图(2),过点B作BH⊥CD于点H, ∵∠ABC=45°,DB⊥MN, ∴∠CBD=135°, ∵∠BCD=30°, ∴∠CBH=60°, ∴∠DBH=75°, ∴∠D=15°, ∴BH=BD•sin45°, ∴△BDH是等腰直角三角形, ∴DH=BH=BD=×=1, ∵∠BCD=30° ∴CD=2DH=2, ∴CH=, ∴CB=CH+BH=+1; 点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等. 对应训练 2.(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°. (1)操作发现 如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空: ①线段DE与AC的位置关系是 DE∥AC ; ②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是 S1=S2 . (2)猜想论证 当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想. (3)拓展探究 已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE ,请直接写出相应的BF的长. 2.解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上, ∴AC=CD, ∵∠BAC=90°-∠B=90°-30°=60°, ∴△ACD是等边三角形, ∴∠ACD=60°, 又∵∠CDE=∠BAC=60°, ∴∠ACD=∠CDE, ∴DE∥AC; ②∵∠B=30°,∠C=90°, ∴CD=AC=AB, ∴BD=AD=AC, 根据等边三角形的性质,△ACD的边AC、AD上的高相等, ∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等), 即S1=S2; 故答案为:DE∥AC;S1=S2; (2)如图,∵△DEC是由△ABC绕点C旋转得到, ∴BC=CE,AC=CD, ∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°, ∴∠ACN=∠DCM, ∵在△ACN和△DCM中, , ∴△ACN≌△DCM(AAS), ∴AN=DM, ∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等), 即S1=S2; (3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形, 所以BE=DF1,且BE、DF1上的高相等, 此时S△DCF=S△BDE, 过点D作DF2⊥BD, ∵∠ABC=60°, ∴∠F1DF2=∠ABC=60°, ∴△DF1F2是等边三角形, ∴DF1=DF2, ∵BD=CD,∠ABC=60°,点D是角平分线上一点, ∴∠DBC=∠DCB=×60°=30°, ∴∠CDF1=180°-30°=150°, ∠CDF2=360°-150°-60°=150°, ∴∠CDF1=∠CDF2, ∵在△CDF1和△CDF2中, , ∴△CDF1≌△CDF2(SAS), ∴点F2也是所求的点, ∵∠ABC=60°,点D是角平分线上一点,DE∥AB, ∴∠DBC=∠BDE=∠ABD=×60°=30°, 又∵BD=4, ∴BE=×4÷cos30°=2÷=, ∴BF1=,BF2=BF1+F1F2=+=, 故BF的长为或. 考点三:规律探究型: 规律探索问题是指由几个具体结论通过类比、猜想、推理等一系列的数学思维过程,来探求一般性结论的问题,解决这类问题的一般思路是通过对所给的具体的结论进行全面、细致的观察、分析、比较,从中发现其变化的规律,并猜想出一般性的结论,然后再给出合理的证明或加以运用. 例3 (2013•闸北区二模)观察方程①:x+=3,方程②:x+=5,方程③:x+=7. (1)方程①的根为: x1=1,x2=2 ;方程②的根为: x1=2,x2=3 ;方程③的根为: x1=3,x2=4 ; (2)按规律写出第四个方程: =9 ;此分式方程的根为: x1=4,x2=5 ; (3)写出第n个方程(系数用n表示): =2n+1 ;此方程解是: x1=n,x2=n+1 . 思路分析:先计算出方程的根,再根据根的变化规律求出方程的一般形式及根的变化规律. 解:(1)两边同时乘以x得,x2-3x+2=0, 方程①根:x1=1,x2=2; 两边同时乘以x得,x2-5x+6=0, 方程②根:x1=2,x2=3; 两边同时乘以x得,x2-7x+12=0, 方程③根:x1=3,x2=4; (2)方程④:x+=9;方程④根:x1=4,x2=5. (3)第n个方程:x+=2n+1. 此方程解:x1=n,x2=n+1. 点评:本题考查了分式方程的解,从题目中找出规律是解题的关键. 对应训练 3.(2013•南沙区一模)如图,一个动点P在平面直角坐标系中按箭头所示方向作折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是 (2013,1) . 3.(2013,1) 考点四:存在探索型: 此类问题在一定的条件下,需探究发现某种数学关系是否存在的题目. 例4 (2013•呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F, (1) 的值为 ; (2)求证:AE=EP; (3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由. 思路分析:(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答; (2)在BA边上截取BK=NE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出; (3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出. 解:(1)∵四边形ABCD是正方形, ∴∠B=∠D, ∵∠AEP=90°, ∴∠BAE=∠FEC, 在Rt△ABE中,AE=, ∵sin∠BAE==sin∠FEC=, ∴=, (2)证明:在BA边上截取BK=NE,连接KE, ∵∠B=90°,BK=BE, ∴∠BKE=45°, ∴∠AKE=135°, ∵CP平分外角, ∴∠DCP=45°, ∴∠ECP=135°, ∴∠AKE=∠ECP, ∵AB=CB,BK=BE, ∴AB-BK=BC-BE, 即:AK=EC, 易得∠KAE=∠CEP, ∵在△AKE和△ECP中, , ∴△AKE≌△ECP(ASA), ∴AE=EP; (3)答:存在. 证明:作DM⊥AE于AB交于点M, 则有:DM∥EP,连接ME、DP, ∵在△ADM与△BAE中, , ∴△ADM≌△BAE(AAS), ∴MD=AE, ∵AE=EP, ∴MD=EP, ∴MD∥EP,MD=EP, ∴四边形DMEP为平行四边形. 点评:此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择. 对应训练 4.(2013•陕西)问题探究: (1)请在图①中作出两条直线,使它们将圆面四等分; (2)如图②,M是正方形ABCD内一定点,请在图② 中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由. 问题解决: (3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由. 4.解:(1)如图1所示, (2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E, 则直线EF、OM将正方形的面积四等份, 理由是:∵点O是正方形ABCD的对称中心, ∴AP=CQ,EB=DF, 在△AOP和△EOB中 ∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE, ∴∠AOP=∠BOE, ∵OA=OB,∠OAP=∠EBO=45°, ∴△AOP≌△EOB, ∴AP=BE=DF=CQ, 设O到正方形ABCD一边的距离是d, 则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d, ∴S四边形AEOP=S四边形BEOC=S四边形CQOF=S四边形DPFM, 直线EF、OM将正方形ABCD面积四等份; (3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份, 理由是:如图③,连接BP并延长交CD的延长线于点E, ∵AB∥CD, ∴∠A=∠EDP, ∵在△ABP和△DEP中 , ∴△ABP≌△DEP(ASA), ∴BP=EP, 连接CP, ∵△BPC的边BP和△EPC的边EP上的高相等, 又∵BP=EP, ∴S△BPC=S△EPC, 作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE, 由三角形面积公式得:PF=PG, 在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP ∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP 即:S四边形ABQP=S四边形CDPQ, ∵BC=AB+CD=a+b, ∴BQ=b, ∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分. 专题五 数学思想方法(一) (整体思想、转化思想、分类讨论思想) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点一:整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。 整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1 (2013•吉林)若a-2b=3,则2a-4b-5= 1 . 思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可. 解:2a-4b-5=2(a-2b)-5=2×3-5=1. 故答案是:1. 点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值. 对应训练 1.(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是 1000 . 1.1000 考点二:转化思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 例2 (2013•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为 1.3 m(容器厚度忽略不计). 思路分析:将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求. 解:如图: ∵高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子, 此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处, ∴A′D=0.5m,BD=1.2m, ∴将容器侧面展开,作A关于EF的对称点A′, 连接A′B,则A′B即为最短距离, A′B= =1.3(m). 故答案为:1.3. 点评:本题利用转化思想把立体问题转化为平面问题,从而使问题简单化、直观化。将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力. 对应训练 2.(2013•宁德质检)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为 4.8 . 2.4.8 解:∵Rt△ABC中,∠C=90°,AC=8,BC=6, ∴AB=10, 如图,连接CP, ∵PD⊥AC于点D,PE⊥CB于点E, ∴四边形DPEC是矩形, ∴DE=CP, 当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小, ∴DE=CP= =4.8, 故答案为4.8. 考点三:分类讨论思想 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏. 例3 (2013•山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示: (1)填空:甲种收费的函数关系式是 y1=0.1x+6, . 乙种收费的函数关系式是 y2=0.12x, . (2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算? 思路分析:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,直接运用待定系数法就可以求出结论; (2)由(1)的解析式分三种情况进行讨论,当y1>y2时,当y1=y2时,当y1<y2时分别求出x的取值范围就可以得出选择方式. 解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得 ,12=100k1, 解得:,k1=0.12, ∴y1=0.1x+6,y2=0.12x; (2)由题意,得 当y1>y2时,0.1x+6>0.12x,得x<300; 当y1=y2时,0.1x+6=0.12x,得x=300; 当y1<y2时,0.1x+6<0.12x,得x>300; ∴当100≤x<300时,选择乙种方式合算; 当x=100时,甲乙两种方式一样合算; 当300<x≤4500时,选择甲种方式合算. 故答案为:y1=0.1x+6,y2=0.12x. 点评:本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点. 对应训练 3.(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元). (1)请你设计出进货方案; (2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元? (3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案. 3.解:(1)设A型电脑购进x台,则B型电脑购进(40-x)台,由题意,得 , 解得:21≤x≤24, ∵x为整数, ∴x=21,22,23,24 ∴有4种购买方案: 方案1:购A型电脑21台,B型电脑19台; 方案2:购A型电脑22台,B型电脑18台; 方案3:购A型电脑23台,B型电脑17台; 方案4:购A型电脑24台,B型电脑16台; (2)由题意,得 y=(3000-2500)x+(3200-2800)(40-x), =500x+16000-400x, =100x+16000. ∵k=100>0, ∴y随x的增大而增大, ∴x=24时,y最大=18400元. (3)设再次购买A型电脑a台,B型电脑b台,帐篷c顶,由题意,得 2500a+2800b+500c=18400, c=. ∵a≥2,b≥2,c≥1,且a、b、c为整数, ∴184-25a-28b>0,且是5的倍数.且c随a、b的增大而减小. 当a=2,b=2时,184-25a-28b=78,舍去; 当a=2,b=3时,184-25a-28b=50,故c=10; 当a=3,b=2时,184-25a-28b=53,舍去; 当a=3,b=3时,184-25a-28b=25,故c=5; 当a=3,b=4时,184-25a-28b=-2,舍去, 当a=4,b=3时,184-25a-28b=0,舍去. ∴有2种购买方案: 方案1:购A型电脑2台,B型电脑3台,帐篷10顶, 方案2:购A型电脑3台,B型电脑3台,帐篷5顶. 专题六 数学思想方法(二) (方程思想、函数思想、数形结合思想) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点四:方程思想 从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。 用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。 例4 (2013•温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=4,BC-AC=2,求CE的长. 思路分析:(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D; (2)首先设BC=x,则AC=x-2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x-2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长. 解答:(1)证明:∵AB为⊙O的直径, ∴∠ACB=90°, ∴AC⊥BC, ∵DC=CB, ∴AD=AB, ∴∠B=∠D; (2)解:设BC=x,则AC=x-2, 在Rt△ABC中,AC2+BC2=AB2, ∴(x-2)2+x2=42, 解得:x1=1+,x2=1-(舍去), ∵∠B=∠E,∠B=∠D, ∴∠D=∠E, ∴CD=CE, ∵CD=CB, ∴CE=CB=1+. 点评:此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用. 对应训练 4.(2013•娄底)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41, ≈1.73) 4.解:如图,过点C作CD⊥AB于点D, 设CD=x, 在Rt△ACD中,∠CAD=30°, 则AD=CD=x, 在Rt△BCD中,∠CBD=45°, 则BD=CD=x, 由题意得,x-x=4, 解得:x==2(+1)≈5.5. 答:生命所在点C的深度为5.5米. 考点五:函数思想 函数思想是用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。 例5 (2013•凉山州)某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变). (1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式? (2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数. 思路分析:(1)根据每天运量×天数=总运量即可列出函数关系式; (2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可. 解:(1)∵每天运量×天数=总运量 ∴nt=4000 ∴n=; (2)设原计划x天完成,根据题意得: (1-20%)=。 解得:x=4 经检验:x=4是原方程的根, 答:原计划4天完成. 点评:本题考查了反比例函数的应用及分式方程的应用,解题的关键是找到题目中的等量关系. 对应训练 5.(2013•济南)某地计划用120-180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3. (1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围; (2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3? 2.解:(1)由题意得,y=, 把y=120代入y=,得x=3, 把y=180代入y=,得x=2, ∴自变量的取值范围为:2≤x≤3, ∴y=(2≤x≤3); (2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3, 根据题意得:-=24 解得:x=2.5或x=-3 经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去, 答:原计划每天运送2.5万米3,实际每天运送3万米3. 考点六:数形结合思想 数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。 例6 (2013•玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有 6 个,写出其中一个点P的坐标是 (5,0) . 思路分析:作出图形,然后利用数形结合的思想求解,再根据平面直角坐标系写出点P的坐标即可. 解:如图所示,满足条件的点P有6个, 分别为(5,0)(8,0)(0,5)(0,6)(-5,0)(0,-5). 故答案为:6;(5,0)(答案不唯一,写出6个中的一个即可). 点评:本题考查了等腰三角形的判定,坐标与图形的性质,利用数形结合的思想求解更简便. 对应训练 6.(2013•南充)如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是( ) A.x>1 B.-1<x<0 C.-1<x<0或x>1 D.x<-1或0<x<1 6.C 专题七 归纳猜想型问题 一、中考专题诠释 归纳猜想型问题在中考中越来越被命题者所注重。这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。 二、解题策略和解法精讲 归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。 由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。 三、中考考点精讲 考点一:猜想数式规律 通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。 例1 (2013•巴中)观察下面的单项式:a,-2a2,4a3,-8a4,…根据你发现的规律,第8个式子是 -128a8 . 思路分析:根据单项式可知n为双数时a的前面要加上负号,而a的系数为2(n-1),a的指数为n. 解:第八项为-27a8=-128a8. 点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 对应训练 1.(2013•株洲)一组数据为:x,-2x2,4x3,-8x4,…观察其规律,推断第n个数据应为 (-2)n-1xn . 1.(-2)n-1xn 考点二:猜想图形规律 根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。其中,以图形为载体的数字规律最为常见。猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。 例2 (2013•牡丹江)用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是 3n+4 . 思路分析:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2-1个;第3个图形共有三角形5+3×3-1个;第4个图形共有三角形5+3×4-1个;…;则第n个图形共有三角形5+3n-1=3n+4个; 解答: 解:观察图形可知,第1个图形共有三角形5+2个; 第2个图形共有三角形5+3×2-1个; 第3个图形共有三角形5+3×3-1个; 第4个图形共有三角形5+3×4-1个; …; 则第n个图形共有三角形5+3n-1=3n+4个;故答案为:3n+4 点评:此题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 例3 (2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线 OC 上. 思路分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上. 解:∵1在射线OA上, 2在射线OB上, 3在射线OC上, 4在射线OD上, 5在射线OE上, 6在射线OF上, 7在射线OA上, … 每六个一循环, 2013÷6=335…3, ∴所描的第2013个点在射线和3所在射线一样, ∴所描的第2013个点在射线OC上. 故答案为:OC. 点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键. 对应训练 2.(2013•娄底)如图,是用火柴棒拼成的图形,则第n个图形需 2n+1 根火柴棒. 2.2n+1 3.(2013•江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为 (n+1)2 (用含n的代数式表示). 3.(n+1)2 解:第1个图形中点的个数为:1+3=4, 第2个图形中点的个数为:1+3+5=9, 第3个图形中点的个数为:1+3+5+7=16, …, 第n个图形中点的个数为:1+3+5+…+(2n+1)==(n+1)2. 故答案为:(n+1)2. 考点三:猜想坐标变化规律 例3 (2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为 (0,-2) . 思路分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标. 解:点P1(2,0),P2(-2,2),P3(0,-2),P4(2,2),P5(-2,0),P6(0,0),P7(2,0), 从而可得出6次一个循环, ∵=335…3, ∴点P2013的坐标为(0,-2). 故答案为:(0,-2). 点评:本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律. 对应训练 3.(2013•兰州)如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 (8052,0) . 3.(8052,0) 考点四:猜想数量关系 数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式。在猜想这种问题时,通常也是根据题目给出的关系式进行类比,仿照猜想数式规律的方法解答。 例4 (2013•黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明) (2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明. 思路分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证; (2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;选择图3同理可证. 解:(1)证明:如图,过点B作BG⊥OE于G, 则四边形BGEF是矩形, ∴EF=BG,BF=GE, 在正方形ABCD中,OA=OB,∠AOB=90°, ∵BG⊥OE, ∴∠OBG+∠BOE=90°, 又∵∠AOE+∠BOE=90°, ∴∠AOE=∠OBG, ∵在△AOE和△OBG中, , ∴△AOE≌△OBG(AAS), ∴OG=AE,OE=BG, ∵AF-EF=AE,EF=BG=OE,AE=OG=OE-GE=OE-BF, ∴AF-OE=OE-BF, ∴AF+BF=2OE; (2)图2结论:AF-BF=2OE, 图3结论:AF-BF=2OE. 对图2证明:过点B作BG⊥OE交OE的延长线于G, 则四边形BGEF是矩形, ∴EF=BG,BF=GE, 在正方形ABCD中,OA=OB,∠AOB=90°, ∵BG⊥OE, ∴∠OBG+∠BOE=90°, 又∵∠AOE+∠BOE=90°, ∴∠AOE=∠OBG, ∵在△AOE和△OBG中, , ∴△AOE≌△OBG(AAS), ∴OG=AE,OE=BG, ∵AF-EF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF, ∴AF-OE=OE+BF, ∴AF-BF=2OE; 若选图3,其证明方法同上. 点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点. 对应训练 4.(2013•锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF. (1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想; (2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系; (3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想. 4.(1)EF=BE+DF, 证明:如答图1,延长CB到Q,使BQ=DF,连接AQ, ∵四边形ABCD是正方形, ∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°, 在△ADF和△ABQ中 , ∴△ADF≌△ABQ(SAS), ∴AQ=AF,∠QAB=∠DAF, ∵∠DAB=90°,∠FAE=45°, ∴∠DAF+∠BAE=45°, ∴∠BAE+∠BAQ=45°, 即∠EAQ=∠FAE, 在△EAQ和△EAF中 , ∴△EAQ≌△EAF, ∴EF=BQ=BE+EQ=BE+DF. (2)解:AM=AB, 理由是:∵△EAQ≌△EAF,EF=BQ, ∴×BQ×AB=×FE×AM, ∴AM=AB. (3)AM=AB, 证明:如答图2,延长CB到Q,使BQ=DF,连接AQ, ∵折叠后B和D重合, ∴AD=AB,∠D=∠DAB=∠ABE=90°,∠BAC=∠DAC=∠BAD, 在△ADF和△ABQ中 , ∴△ADF≌△ABQ(SAS), ∴AQ=AF,∠QAB=∠DAF, ∵∠FAE=∠BAD, ∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD, 即∠EAQ=∠FAE, 在△EAQ和△EAF中 ∴△EAQ≌△EAF, ∴EF=BQ, ∵△EAQ≌△EAF,EF=BQ, ∴×BQ×AB=×FE×AM, ∴AM=AB. 考点五:猜想变化情况 随着数字或图形的变化,它原先的一些性质有的不会改变,有的则发生了变化,而且这种变化是有一定规律的。比如,在几何图形按特定要求变化后,只要本质不变,通常的规律是“位置关系不改变,乘除乘方不改变,减变加法加变减,正号负号要互换”。这种规律可以作为猜想的一个参考依据。 例5 (2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= . 思路分析:首先根据勾股定理求出OP4,再由OP1,OP2,OP3的长度找到规律进而求出OP2012的长. 解:由勾股定理得:OP4==, ∵OP1=;得OP2=;OP3=2=; 依此类推可得OPn=, ∴OP2012=, 故答案为:. 点评:本题考查了勾股定理的运用,解题的关键是由已知数据找到规律. 对应训练 5.(2013•黑龙江)已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形ABnCn的面积为 )n . 5. 考点六:猜想数字求和 例6 (2013•广安)已知直线y=(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012= . 思路分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出Sn,再利用拆项法整理求解即可. 解:令x=0,则y=, 令y=0,则-x+=0, 解得x=, 所以,Sn==, 所以,S1+S2+S3+…+S2012= ==. 故答案为:. 点评:本题考查的是一次函数图象上点的坐标特点,表示出Sn,再利用拆项法写成两个数的差是解题的关键,也是本题的难点. 对应训练 6.(2013•黔东南州)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是 1014049 . 6.1014049 专题八 阅读理解型问题 一、中考专题诠释 阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题. 二、解题策略与解法精讲 解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题. 三、中考考点精讲 考点一: 阅读试题提供新定义、新定理,解决新问题 例1 (2013•六盘水)阅读材料: 关于三角函数还有如下的公式: sin(α±β)=sinαcosβ±cosasinβ; tan(α±β)= 。 利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan(45°-30°)= = =2-。 根据以上阅读材料,请选择适当的公式解答下面问题 (1)计算:sin15°; (2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据=1.732, =1.414) 思路分析:(1)把15°化为45°-30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ计算,即可求出sin15°的值; (2)先根据锐角三角函数的定义求出BE的长,再根据AB=AE+BE即可得出结论. 解:(1)sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°= ; (2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米, ∴BE=DE•tan∠BDE=DE•tan75°. ∵tan75°=tan(45°+30°)== = =2+。 ∴BE=7(2+)=14+7, ∴AB=AE+BE=1.62+14+7≈27.7(米). 答:乌蒙铁塔的高度约为27.7米. 点评:本题考查了: (1)特殊角的三角函数值的应用,属于新题型,解题的关键是根据题目中所给信息结合特殊角的三角函数值来求解. (2)解直角三角形的应用-仰角俯角问题,先根据锐角三角函数的定义得出BE的长是解题的关键 对应训练 1.(2013•沈阳)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等. 理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD. 应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O. (1)求证:△AOB和△AOE是“友好三角形”; (2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积. 探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得 到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积. 1.分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形; (2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解. 探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ ABC的面积. ② 解答:(1)证明:∵四边形ABCD是矩形, ∴AD∥BC, ∵AE=BF, ∴四边形ABFE是平行四边形, ∴OE=OB, ∴△AOE和△AOB是友好三角形. (2)解:∵△AOE和△DOE是友好三角形, ∴S△AOE=S△DOE,AE=ED=AD=3, ∵△AOB与△AOE是友好三角形, ∴S△AOB=S△AOE. ∵△AOE≌△FOB, ∴S△AOE=S△FOB, ∴S△AOD=S△ABF, ∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12. 探究: 解:分为两种情况:①如图1, ∵S△ACD=S△BCD. ∴AD=BD=AB, ∵沿CD折叠A和A′重合, ∴AD=A′D=AB=×4=2, ∵△A′CD与△ABC重合部分的面积等于△ABC面积的, ∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC, ∴DO=OB,A′O=CO, ∴四边形A′DCB是平行四边形, ∴ BC=A′D=2, 过B作BM⊥AC于M, ∵AB=4,∠BAC=30°, ∴BM=AB=2=BC, 即C和M重合, ∴∠ACB=90°, 由勾股定理得:AC==2, ∴△ABC的面积是×BC×AC=×2×2=2; ②如图2, ∵S△ACD=S△BCD. ∴AD=BD=AB, ∵沿CD折叠A和A′重合, ∴AD=A′D=AB=×4=2, ∵△A′CD与△ABC重合部分的面积等于△ABC面积的, ∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC, ∴DO=OA′,BO=CO, ∴四边形A′DCB是平行四边形, ∴BD=A′C=2, 过C作CQ⊥A′D于Q, ∵A′C=2,∠DA′C=∠BAC=30°, ∴CQ=A′C=1, ∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2; 即△ABC的面积是2或2. 点评: 本题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据已知题意和所学的定理进行推理.题目比较好,但是有一定的难度. 考点二、阅读试题信息,归纳总结提炼数学思想方法 例2 (2013•齐齐哈尔)在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米. (1)试问甲乙两个工程队每天分别修路多少米? (2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人? (3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少? 思路分析:(1)设甲队每天修路x米,乙队每天修路y米,然后根据两队修路的长度分别为200米和350米两个等量关系列出方程组,然后解方程组即可得解; (2)根据甲队抽调m人后两队所修路的长度不小于4000米,列出一元一次不等式,然后求出m的取值范围,再根据m是正整数解答; (3)设甲工程队修a天,乙工程队修b天,根据所修路的长度为4000米列出方程整理并用a表示出b,再根据0≤b≤30表示出a的取值范围,再根据总费用等于两队的费用之和列式整理,然后根据一次函数的增减性解答. 解:(1)设甲队每天修路x米,乙队每天修路y米, 依题意得,, 解得, 答:甲工程队每天修路100米,乙工程队每天修路50米; (2)依题意得,10×100+20××100+30×50≥4000, 解得,m≤, ∵0<m<10, ∴0<m≤, ∵m为正整数, ∴m=1或2, ∴甲队可以抽调1人或2人; (3)设甲工程队修a天,乙工程队修b天, 依题意得,100a+50b=4000, 所以,b=80-2a, ∵0≤b≤30, ∴0≤80-2a≤30, 解得25≤a≤40, 又∵0≤a≤30, ∴25≤a≤30, 设总费用为W元,依题意得, W=0.6a+0.35b, =0.6a+0.35(80-2a), =-0.1a+28, ∵-0.1<0, ∴当a=30时,W最小=-0.1×30+28=25(万元), 此时b=80-2a=80-2×30=20(天). 答:甲工程队需做30天,乙工程队需做20天,最低费用为25万元. 点评:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,理清题中熟练关系,准确找出等量关系与不等量关系分别列出方程组和不等式是解题的关键,(3)先根据总工作量表示出甲乙两个工程队的天数的关系是解题的关键. 对应训练 2.(2013•宁波)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示: 甲 乙 进价(元/部) 4000 2500 售价(元/部) 4300 3000 该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元. (毛利润=(售价-进价)×销售量) (1)该商场计划购进甲、乙两种手机各多少部? (2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润. 2.解:(1)设商场计划购进甲种手机x部,乙种手机y部,由题意,得 , 解得:, 答:商场计划购进甲种手机20部,乙种手机30部; (2)设甲种手机减少a部,则乙种手机增加2a部,由题意,得 0.4(20-a)+0.25(30+2a)≤16, 解得:a≤5. 设全部销售后获得的毛利润为W元,由题意,得 W=0.03(20-a)+0.05(30+2a) =0.07a+2.1 ∵k=0.07>0, ∴W随a的增大而增大, ∴当a=5时,W最大=2.45. 答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元. 考点三、阅读相关信息,通过归纳探索,发现规律,得出结论 例3 (2013•连云港)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究: 问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积) 问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由. 实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25, ≈1.73) 拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(,)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值. 思路分析:问题情境:根据可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE就可以得出结论; 问题迁移:根据问题情境的结论可以得出当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF于G.由全等三角形的性质可以得出结论; 实际运用:如图3,作PP1⊥OB,MM1⊥OB,垂足分别为P1,M1,再根据条件由三角函数值就可以求出结论; 拓展延伸:分情况讨论当过点P的直线l与四边形OABC的一组对边OC、AB分别交于点M、N,延长OC、AB交于点D,由条件可以得出AD=6,就可以求出△OAD的面积,再根据问题迁移的结论就可以求出最大值; 当过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,延长CB交x轴于T,由B、C的坐标可得直线BC的解析式,就可以求出T的坐标,从而求出△OCT的面积,再由问题迁移的结论可以求出最大值,通过比较久可以求出结论. 解:问题情境:∵AD∥BC, ∴∠DAE=∠F,∠D=∠FCE. ∵点E为DC边的中点, ∴DE=CE. ∵在△ADE和△FCE中, , ∴△ADE≌△FCE(AAS), ∴S△ADE=S△FCE, ∴S四边形ABCE+S△ADE=S四边形ABCE+S△FCE, 即S四边形ABCD=S△ABF; 问题迁移:出当直线旋转到点P是MN的中点时S△MON最小,如图2, 过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G, 由问题情境可以得出当P是MN的中点时S四边形MOFG=S△MON. ∵S四边形MOFG<S△EOF, ∴S△MON<S△EOF, ∴当点P是MN的中点时S△MON最小; 实际运用:如图3,作PP1⊥OB,MM1⊥OB,垂足分别为P1,M1, 在Rt△OPP1中, ∵∠POB=30°, ∴PP1=OP=2,OP1=2. 由问题迁移的结论知道,当PM=PN时,△MON的面积最小, ∴MM1=2PP1=4,M1P1=P1N. 在Rt△OMM1中, tan∠AOB=, 2.25=, ∴OM1=, ∴M1P1=P1N=2-, ∴ON=OP1+P1N=2+2-=4-. ∴S△MON=ON•MM1=(4-)×4=8-≈10.3km2. 拓展延伸:①如图4,当过点P的直线l与四边形OABC的一组对边OC、AB分别交于点M、N,延长OC、AB交于点D, ∵C(,), ∴∠AOC=45°, ∴AO=AD. ∴A(6,0), ∴OA=6, ∴AD=6. ∴S△AOD=×6×6=18, 由问题迁移的结论可知,当PN=PM时,△MND的面积最小, ∴四边形ANMO的面积最大. 作PP1⊥OA,MM1⊥OA,垂足分别为P1,M1, ∴M1P1=P1A=2, ∴OM1=M1M=2, ∴MN∥OA, ∴S四边形OANM=S△OMM1+S四边形ANPP1=×2×2+2×4=10 ②如图5,当过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,延长CB交x轴于T, ∵C(,)、B(6,3),设直线BC的解析式为y=kx+b,由题意,得 , 解得:, ∴y=-x+9, 当y=0时,x=9, ∴T(9,0). ∴S△OCT=××9=. 由问题迁移的结论可知,当PM=PN时,△MNT的面积最小, ∴四边形CMNO的面积最大. ∴NP1=M1P1,MM1=2PP1=4, ∴4=-x+9, ∴x=5, ∴M(5,4), ∴OM1=5. ∵P(4,2), ∴OP1=4, ∴P1M1=NP1=1, ∴ON=3, ∴NT=6. ∴S△MNT=×4×6=12, ∴S四边形OCMN=-12=<10. ∴综上所述:截得四边形面积的最大值为10. 对应训练 3.(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现: 在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是 ①②③④ (填序号即可) ①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB. ●数学思考: 在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程; ●类比探究: 在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答: 等腰直角三角形 . 思路分析:操作发现:由条件可以通过三角形全等和轴对称的性质,直角三角形的性质就可以得出结论; 数学思考:作AB、AC的中点F、G,连接DF,MF,EG,MG,根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形,从而得出△DFM≌△MGE,根据其性质就可以得出结论; 类比探究:作AB、AC的中点F、G,连接DF,MF,EG,MG,DF和MG相交于H,根据三角形的中位线的性质K可以得出△DFM≌△MGE,由全等三角形的性质就可以得出结论; 解:●操作发现: ∵△ADB和△AEC是等腰直角三角形, ∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90° ∵在△ADB和△AEC中, , ∴△ADB≌△AEC(AAS), ∴BD=CE,AD=AE, ∵DF⊥AB于点F,EG⊥AC于点G, ∴AF=BF=DF=AB,AG=GC=GE=AC. ∵AB=AC, ∴AF=AG=AB,故①正确; ∵M是BC的中点, ∴BM=CM. ∵AB=AC, ∴∠ABC=∠ACB, ∴∠ABC+∠ABD=∠ACB+∠ACE, 即∠DBM=∠ECM. ∵在△DBM和△ECM中 , ∴△DBM≌△ECM(SAS), ∴MD=ME.故②正确; 如图,连接AM,根据前面的证明可以得出将图形1,沿AM对折左右两部分能完全重合, ∴整个图形是轴对称图形,故③正确. ∵AB=AC,BM=CM, ∴AM⊥BC, ∴∠AMB=∠AMC=90°, ∵∠ADM=90°, ∴四边形ADBM四点共圆, ∴∠AMD=∠ABD=45°. ∵AM是对称轴, ∴∠AME=∠AMD=45°, ∴∠DME=90°, ∴MD⊥ME,故④正确, 故答案为:①②③④ ●数学思考: MD=ME,MD⊥ME. 理由:如图,作AB、AC的中点F、G,连接DF,MF,EG,MG, ∴AF=AB,AG=AC. ∵△ABD和△AEC是等腰直角三角形, ∴DF⊥AB,DF=AB,EG⊥AC,EG=AC, ∴∠AFD=∠AGE=90°,DF=AF,GE=AG. ∵M是BC的中点, ∴MF∥AC,MG∥AB, ∴四边形AFMG是平行四边形, ∴AG=MF,MG=AF,∠AFM=∠AGM. ∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE, ∴∠DFM=∠MGE. ∵在△DFM和△MGE中, , ∴△DFM≌△MGE(SAS), ∴DM=ME,∠FDM=GME. ∵MG∥AB, ∴∠GMH=∠BHM. ∵∠BHM=90°+∠FDM, ∴∠BHM=90°+∠GME, ∴∠BHM=90°+∠GME, ∵∠BHM=∠DME+∠GME, ∴∠DME+∠GME=90°+∠GME, 即∠DME=90°, ∴MD⊥ME. ∴DM=ME,MD⊥ME; ●类比探究: ∵如图3,点M、F、G分别是BC、AB、AC的中点, ∴MF∥AC,MF=AC,MG∥AB,MG=AB, ∴四边形MFAG是平行四边形, ∴MG=AF,MF=AG.∠AFM=∠AGM ∵△ADB和△AEC是等腰直角三角形, ∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90° ∴MF=EG,DF=MG,∠AFM-∠AFD=∠AGM-∠AGE, 即∠DFM=∠MGE. ∵在△DFM和△MGE中 , ∴△DFM≌△MGE(SAS), ∴MD=ME,∠MDF=∠EMG. ∵MG∥AB, ∴∠MHD=∠BFD=90°, ∴∠HMD+∠MDF=90°, ∴∠HMD+∠EMG=90°, 即∠DME=90°, ∴△DME为等腰直角三角形. 考点四、阅读试题信息,借助已有数学思想方法解决新问题 例4 (2013•北京)阅读下面材料: 小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积. 小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) 请回答: (1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为 a ; (2)求正方形MNPQ的面积. (3)参考小明思考问题的方法,解决问题: 如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,则AD的长为 . 思路分析:(1)四个等腰直角三角形的斜边长为a,其拼成的正方形面积为a2,边长为a; (2)如题图2所示,正方形MNPQ的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ的面积; (3)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形△RSF,△QEF,△PDW的面积和等于等边三角形△ABC的面积,故阴影三角形△PQR的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD的长度. 解:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为a, 每个等腰直角三角形的面积为:a•a=a2, 则拼成的新正方形面积为:4×a2=a2,即与原正方形ABCD面积相等 ∴这个新正方形的边长为a. 故填空答案为:a. (2)∵四个等腰直角三角形的面积和为a2,正方形ABCD的面积为a2, ∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE=4××12=2. (3)如答图1所示,分别延长RD,QF,PE交FA,EC,DB的延长线于点S,T,W. 由题意易得:△RSF,△QEF,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长. 不妨设等边三角形边长为a,则SF=AC=a. 如答图2所示,过点R作RM⊥SF于点M,则MF=SF=a, 在Rt△RMF中,RM=MF•tan30°=a×=a, ∴S△RSF=a•a=a2. 过点A作AN⊥SD于点N,设AD=AS=x, 则AN=AR•sin30°=x,SD=2ND=2ARcos30°=x, ∴S△ADS=SD•AN=•x•x=x2. ∵三个等腰三角形△RSF,△QEF,△PDW的面积和=3S△RSF=3×a2=a2,正△ABC的面积为a2, ∴S△RPQ=S△ADS+S△CFT+S△BEW=3S△ADS, ∴=3×x2,得x2=,解得x=或x=-(不合题意,舍去) ∴x=,即AD的长为. 故填空答案为:. 点评:本题考查了几何图形的等积变换,涉及正方形、等腰直角三角形、等腰三角形、正三角形、解直角三角形等多个知识点,是一道好题.通过本题我们可以体会到,运用等积变换的数学思想,不仅简化了几何计算,而且形象直观,易于理解,体现了数学的魅力. 对应训练 4.(2013•河北)一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究 如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示. 解决问题: (1)CQ与BE的位置关系是 CQ∥BE ,BQ的长是 3 dm; (2)求液体的体积;(参考算法:直棱柱体积V液=底面积SBCQ×高AB) (3)求α的度数.(注:sin49°=cos41°=,tan37°= ) 拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围. 延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3. 4.解:(1)CQ∥BE,BQ==3; (2)V液=×3×4×4=24(dm3); (3)在Rt△BCQ中,tan∠BCQ=, ∴α=∠BCQ=37°. 当容器向左旋转时,如图3,0°≤α≤37°, ∵液体体积不变, ∴(x+y)×4×4=24, ∴y=-x+3. 当容器向右旋转时,如图4.同理可得:y=; 当液面恰好到达容器口沿,即点Q与点B′重合时,如图5, 由BB′=4,且PB•BB′×4=24,得PB=3, ∴由tan∠PB′B=,得∠PB′B=37°. ∴α=∠B′PB=53°.此时37°≤α≤53°; 延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H. 在Rt△B′GH中,GH=MB=2,∠GB′B=30°, ∴HB′=2. ∴MG=BH=4-2<MN. 此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱. ∵S△NFM+SMBB′G=××1+(4-2+4)×2=8-. ∴V溢出=24-4(8-)=-8>4(dm3). ∴溢出液体可以达到4dm3. 专题九 方案设计型问题 一、中考专题诠释 方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。 随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。 二、解题策略和解法精讲 方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。 三、中考考点精讲 考点一:设计测量方案问题 这类问题主要包括物体高度的测量和地面宽度的测量。所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。 例1 1.(2013•吉林)某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案: 课题 测量教学楼高度 方案 一 二 图示 测得数据 CD=6.9m,∠ACG=22°,∠BCG=13°, EF=10m,∠AEB=32°,∠AFB=43° 参考数据 sin22°≈0.37,cos22°≈0.93, tan22°≈0.40 sin13°≈0.22,cos13°≈0.97 tan13°≈0.23 sin32°≈0.53,cos32°≈0.85,tan32°≈0.62 sin43°≈0.68,cos43°≈0.73,tan43°≈0.93 请你选择其中的一种方法,求教学楼的高度(结果保留整数) 思路分析:若选择方法一,在Rt△BGC中,根据CG=即可得出CG的长,同理,在Rt△ACG中,根据tan∠ACG= 可得出AG的长,根据AB=AG+BG即可得出结论. 若选择方法二,在Rt△AFB中由tan∠AFB=可得出FB的长,同理,在Rt△ABE中,由tan∠AEB=可求出EB的长,由EF=EB-FB且EF=10,可知 =10,故可得出AB的长. 解:若选择方法一,解法如下: 在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9, ∵CG==30, 在Rt△ACG中,∠AGC=90°,∠ACG=22°, ∵tan∠ACG=, ∴AG=30×tan22°≈30×0.40=12, ∴AB=AG+BG=12+6.9≈19(米). 答:教学楼的高度约19米. 若选择方法二,解法如下: 在Rt△AFB中,∠ABF=90°,∠AFB=43°, ∵tan∠AFB=, ∴FB=≈, 在Rt△ABE中,∠ABE=90°,∠AEB=32°, ∵tan∠AEB=, ∴EB=≈, ∵EF=EB-FB且EF=10, ∴-=10,解得AB=18.6≈19(米). 答:教学楼的高度约19米. 对应训练 1.(2013•内江)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计). 1.解:如图,过点A作AF⊥DE于F, 则四边形ABEF为矩形, ∴AF=BE,EF=AB=3, 设DE=x, 在Rt△CDE中,CE==x, 在Rt△ABC中, ∵,AB=3, ∴BC=3, 在Rt△AFD中,DF=DE-EF=x-3, ∴AF==(x-3), ∵AF=BE=BC+CE, ∴(x-3)=3+x, 解得x=9. 答:树高为9米. 考点二:设计搭配方案问题 这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。它一般给出两种元素,利用这两种元素搭配出不同的新事物,设计出方案,使获利最大或成本最低。解题时要根据题中蕴含的不等关系,列出不等式(组),通过不等式组的整数解来确定方案。 例2 (2013•昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本. (1)求打折前每本笔记本的售价是多少元? (2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案? 思路分析:(1)设打折前售价为x,则打折后售价为0.9x,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可; (2)设购买笔记本y件,则购买笔袋(90-y)件,根据购买总金额不低于360元,且不超过365元,可得出不等式组,解出即可. 解:(1)设打折前售价为x,则打折后售价为0.9x, 由题意得,, 解得:x=4, 经检验得:x=4是原方程的根, 答:打折前每本笔记本的售价为4元. (2)设购买笔记本y件,则购买笔袋(90-y)件, 由题意得,360≤4×0.9×y+6×0.9×(90-y)≤365, 解得:67≤y≤70, ∵x为正整数, ∴x可取68,69,70, 故有三种购买方案: 方案一:购买笔记本68本,购买笔袋22个; 方案二:购买笔记本69本,购买笔袋21个; 方案三:购买笔记本70本,购买笔袋20个; 点评:本题考查了分式方程的应用、一元一次不等式组的应用,解答此类应用类题目,一定要先仔细审题,有时需要读上几遍,找到解题需要的等量关系或不等关系. 对应训练 2.(2013•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨. (1)小明一共有多少种可能的购买方案?列出所有方案; (2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率. 2.解:(1)设购买康乃馨x支,购买兰花y支,由题意,得 , ∵x、y为正整数, 当x=1时,y=6,7,8符合题意, 当x=2时,y=5,6符合题意, 当x=3时,y=4,5符合题意, 当x=4时,y=3符合题意, 当x=5时,y=1舍去, 当x=6时,y=0舍去. 共有8种购买方案, 方案1:购买康乃馨1支,购买兰花6支; 方案2:购买康乃馨1支,购买兰花7支; 方案3:购买康乃馨1支,购买兰花8支; 方案4:购买康乃馨2支,购买兰花5支; 方案5:购买康乃馨2支,购买兰花6支; 方案6:购买康乃馨3支,购买兰花4支; 方案7:购买康乃馨3支,购买兰花5支; 方案8:购买康乃馨4支,购买兰花3支; (2)由题意,得, , 购花的方案有: 方案1:购买康乃馨1支,购买兰花6支; 方案2:购买康乃馨1支,购买兰花7支; 方案4:购买康乃馨2支,购买兰花5支; 方案5:购买康乃馨2支,购买兰花6支; ∴小明实现购买方案的愿望有5种,而总共有8中购买方案, ∴小明能实现购买愿望的概率为P=. 考点三:设计销售方案问题 在商品买卖中,更多蕴含着数学的学问。在形形色色的让利、打折、买一赠一、摸奖等促销活动中,大家不能被表象所迷惑,需要理智的分析。通过计算不同的销售方案盈利情况,可以帮助我们明白更多的道理。近来还出现运用概率统计知识进行设计的问题。 例3 (2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人. (1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式; (2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由. 思路分析:(1)根据总费用=男生的人数×男生每套的价格+女生的人数×女生每套的价格就可以分别表示出y1(元)和y2(元)与男生人数x之间的函数关系式; (2)根据条件可以知道购买服装的费用受x的变化而变化,分情况讨论,当y1>y2时,当y1=y2时,当y1<y2时,求出x的范围就可以求出结论. 解:(1)总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式分别是: y1=0.7[120x+100(2x-100)]+2200=224x-4800, y2=0.8[100(3x-100)]=240x-8000; (2)由题意,得 当y1>y2时,即224x-4800>240x-8000,解得:x<200 当y1=y2时,即224x-4800=240x-8000,解得:x=200 当y1<y2时,即224x-4800<240x-8000,解得:x>200 即当参演男生少于200人时,购买B公司的服装比较合算; 当参演男生等于200人时,购买两家公司的服装总费用相同,可任一家公司购买; 当参演男生多于200人时,购买A公司的服装比较合算. 点评:本题考查了根据条件求一次函数的解析式的运用,运用不等式求设计方案的运用,解答本题时根据数量关系求出解析式是关键,建立不等式计算优惠方案是难点. 对应训练 3.(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表: 运动鞋 价格 甲 乙 进价(元/双) m m-20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. (1)求m的值; (2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案? (3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货? 3.解:(1)依题意得,, 整理得,3000(m-20)=2400m, 解得m=100, 经检验,m=100是原分式方程的解, 所以,m=100; (2)设购进甲种运动鞋x双,则乙种运动鞋(200-x)双, 根据题意得,, 解不等式①得,x≥95, 解不等式② 得,x≤105, 所以,不等式组的解集是95≤x≤105, ∵x是正整数,105-95+1=11, ∴共有11种方案; (3)设总利润为W,则W=(140-a)x+80(200-x)=(60-a)x+16000(95≤x≤105), ①当50<a<60时,60-a>0,W随x的增大而增大, 所以,当x=105时,W有最大值, 即此时应购进甲种运动鞋105双,购进乙种运动鞋95双; ②当a=60时,60-a=0,W=16000,(2)中所有方案获利都一样; ③当60<a<70时,60-a<0,W随x的增大而减小, 所以,当x=95时,W有最大值, 即此时应购进甲种运动鞋95双,购进乙种运动鞋105双. 考点四:设计图案问题 图形的分割、拼接问题是考查动手操作能力与空间想能力的一类重要问题,在各地的中考试题中经常出现。这类问题大多具有一定的开放性,要求学生多角度、多层次的探索,以展示思维的灵活性、发散性、创新性。 例4 (2013•无锡)下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明. (1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等; (2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等; (3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等. 思路分析:(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可; (2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可; (3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可. 解:(1)如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可; (2)如图,2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可; (3)如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可. 点评:本题考查了图形的剪拼,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面. 对应训练 4.(2013•深圳)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( ) A.8或2 B.10或4+2 C.10或2 D.8或4+2 4.D 专题十 动点型问题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题” 题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为( ) A. B. C. D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( ) A.B. C.D. 1.C 考点二:动态几何型题目 点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 (一)点动问题. 例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是( ) A. B. C. D. 思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象. 解:在Rt△ADE中,AD=,在Rt△CFB中,BC=, ①点P在AD上运动: 过点P作PM⊥AB于点M,则PM=APsin∠A=t, 此时y=EF×PM=t,为一次函数; ②点P在DC上运动,y=EF×DE=30; ③点P在BC上运动,过点P作PN⊥AB于点N,则PN=BPsin∠B=(AD+CD+BC-t)=, 则y=EF×PN=,为一次函数. 综上可得选项A的图象符合. 故选A. 点评:本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,当然在考试过程中,建议同学们直接判断是一次函数还是二次函数,不需要按部就班的解出解析式. 对应训练 2.(2013•北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( ) A. B. C. D. 2.A (二)线动问题 例3 (2013•荆门)如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是( ) A. B. C. D. 思路分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC段时,分别观察出面积变化的情况,然后结合选项即可得出答案. 解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快; ②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变; ③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小; 结合选项可得,A选项的图象符合. 故选A. 点评:本题考查了动点问题的函数图象,类似此类问题,有时候并不需要真正解出函数解析式,只要我们能判断面积增大的快慢就能选出答案. 对应训练 3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是( ) A. B. C. D. 3.A (三)面动问题 例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( ) A. B. C. D. 思路分析:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案. 解:根据题意,设小正方形运动的速度为V,分三个阶段; ①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt, ②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3, ③小正方形穿出大正方形,S=Vt×1, 分析选项可得,A符合; 故选A. 点评:解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况. 对应训练 4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为( ) A. B. C. D. 4.A 考点三:双动点问题 动态问题是近几年来中考数学的热点题型.这类试题信息量大,其中以灵活多变而著称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理信息的能力要求更高高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动. 例5 (2013•攀枝花)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S. (1)点A的坐标为 (-4,0) ,直线l的解析式为 y=x+4 ; (2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围; (3)试求(2)中当t为何值时,S的值最大,并求出S的最大值; (4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值. 思路分析:(1)利用梯形性质确定点D的坐标,利用sin∠DAB=特殊三角函数值,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式; (2)解答本问,需要弄清动点的运动过程: ①当0<t≤1时,如答图1所示; ②当1<t≤2时,如答图2所示; ③当2<t<时,如答图3所示. (3)本问考查二次函数与一次函数在指定区间上的极值,根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值; (4)△QMN为等腰三角形的情形有两种,需要分类讨论,避免漏解. 解:(1)∵C(7,4),AB∥CD, ∴D(0,4). ∵sin∠DAB=, ∴∠DAB=45°, ∴OA=OD=4, ∴A(-4,0). 设直线l的解析式为:y=kx+b,则有 , 解得:k=1,b=4, ∴y=x+4. ∴点A坐标为(-4,0),直线l的解析式为:y=x+4. (2)在点P、Q运动的过程中: ①当0<t≤1时,如答图1所示: 过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5. 过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•=3t. ∴PE=PB-BE=(14-2t)-3t=14-5t, S=PM•PE=×2t×(14-5t)=-5t2+14t; ②当1<t≤2时,如答图2所示: 过点C、Q分别作x轴的垂线,垂足分别为F,E, 则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t, S=PM•PE=×2t×(16-7t)=-7t2+16t; ③当点M与点Q相遇时,DM+CQ=CD=7, 即(2t-4)+(5t-5)=7,解得t=. 当2<t<时,如答图3所示: MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t, S=PM•MQ=×4×(16-7t)=-14t+32. (3)①当0<t≤1时,S=-5t2+14t=-5(t-)2+, ∵a=-5<0,抛物线开口向下,对称轴为直线t=, ∴当0<t≤1时,S随t的增大而增大, ∴当t=1时,S有最大值,最大值为9; ②当1<t≤2时,S=-7t2+16t=-7(t-)2+, ∵a=-7<0,抛物线开口向下,对称轴为直线t=, ∴当t=时,S有最大值,最大值为; ③当2<t<时,S=-14t+32 ∵k=-14<0, ∴S随t的增大而减小. 又∵当t=2时,S=4; 当t=时,S=0, ∴0<S<4. 综上所述,当t=时,S有最大值,最大值为. (4)△QMN为等腰三角形,有两种情形: ①如答图4所示,点M在线段CD上, MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4, 由MN=MQ,得16-7t=2t-4,解得t=; ②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D, 此时△QMN为等腰三角形,t=. 故当t=或t=时,△QMN为等腰三角形. 点评:本题是典型的运动型综合题,难度较大,解题关键是对动点运动过程有清晰的理解.第(3)问中,考查了指定区间上的函数极值,增加了试题的难度;另外,分类讨论的思想贯穿(2)-(4)问始终,同学们需要认真理解并熟练掌握. 对应训练 5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ. (1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示). (2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式. (3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值. (4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值. 5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8. 当点P沿D-A运动时,AP=50×2-8(t-1)=108-8t. (2)当点P与点A重合时,BP=AB,t=1. 当点P与点D重合时,AP=AD,8t-8=50,t=. 当0<t<1时,如图①. 作过点Q作QE⊥AB于点E. S△ABQ=AB•QE=BQ×12, ∴QE==. ∴S=-30t2+30t. 当1<t≤时,如图②. S=AP×12=×(8t-8)×12, ∴S=48t-48; (3)当点P与点R重合时, AP=BQ,8t-8=5t,t=. 当0<t≤1时,如图③. ∵S△BPM=S△BQM, ∴PM=QM. ∵AB∥QR, ∴∠PBM=∠QRM,∠BPM=∠MQR, 在△BPM和△RQM中 , ∴△BPM≌△RQM. ∴BP=RQ, ∵RQ=AB, ∴BP=AB ∴13t=13, 解得:t=1 当1<t≤时,如图④. ∵BR平分阴影部分面积, ∴P与点R重合. ∴t=. 当<t≤时,如图⑤. ∵S△ABR=S△QBR, ∴S△ABR<S四边形BQPR. ∴BR不能把四边形ABQP分成面积相等的两部分. 综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分. (4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时, ∴∠C′OQ=∠OQC. ∵△C′OQ≌△COQ, ∴∠C′OQ=∠COQ, ∴∠CQO=∠COQ, ∴QC=OC, ∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13, 解得:t=7或t=. 当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦. 同理由菱形的性质可以得出:OD=PD, ∴50-5t+13=8(t-1)-50, 解得:t=. ∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.查看更多