- 2021-04-16 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下册数学教案2-1 第1课时 对顶角、余角和补角 北师大版
2.1 两条直线的位置关系 第1课时 对顶角、补角和余角 1.理解并掌握对顶角的概念及性质,会用对顶角的性质解决一些实际问题; 2.理解并掌握补角和余角的概念及性质,会运用其解决一些实际问题.(重点,难点) [来源:学科网] 一、情境导入 如图,若把剪刀看成是两条相交的直线构成的,那么形成的角中小于平角的角有几个,你能发现它们之间的联系吗? 二、合作探究 探究点一:对顶角及其性质 【类型一】 对顶角的概念 下列图形中,∠1与∠2是对顶角的是( ) 解析:选项A中的两个角的顶点没有公共;选项B、D中的两个角的两边没有在互为反向延长线的两条直线上,只有选项C中的两个角符合对顶角的定义.故选C.[来源:Zxxk.Com] 方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角. 【类型二】 直接运用对顶角的性质求角度 如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数. 解析:结合图形,由∠1和∠BOC求得∠BOF的度数,根据“对顶角相等”可得∠2的度数. 解:因为∠1=40°,∠BOC=110°(已知),所以∠BOF=∠BOC-∠1=110°-40°=70°.因为∠BOF=∠2(对顶角相等),所以∠2=70°(等量代换). 方法总结:两条相交直线构成对顶角,这时应注意“对顶角相等”这一隐含的结论.在图形中正确找到对顶角,利用角的和差及对顶角的性质找到角的等量关系, 然后结合已知条件进行转化.[来源:学科网ZXXK] 探究点二:补角和余角 【类型一】 利用补角和余角计算求值 已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数. 解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值. 解:∵∠A与∠B互余,∴∠A+∠B=90°.又∵∠A的度数比∠B度数的3倍还多30°,∴设∠B=x,∴∠A=3∠B+30°=3x+30°,∴3x+30°+x=90°,解得x=15°,故∠B的度数为15°. 方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程来解决. 【类型二】 补角、余角和角平分线的综合计算 如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数. [来源:学科网ZXXK] 解析:根据补角的性质,可得∠AOB+∠COM=180°.根据角的和差,可得∠AOB+∠BOM=90°.根据角平分线的性质,可得∠BOM=∠AOB.根据解方程,可得∠AOB的度数.根据角的和差,可得答案. 解:∵∠AOB与∠COM互补,∴∠AOB+∠COM=180°,即∠AOB+∠BOM+∠COB=180°.∵∠COB=90°,∴∠AOB+∠BOM=90°.∵OM是∠AOB的平分线,∴∠BOM=∠AOB,即∠AOB+∠AOB=90°,解得∠AOB=60°,∴∠AOC=∠BOC+∠AOB=90°+60°=150°.∵ON平分∠AOC得∠AON=∠AOC=×150°=75°.由角的和差,∴∠BON=∠AON-∠AOB=75°-60°=15°. 方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合. 【类型三】 补角和余角的性质 如图,将一副直角三角尺的直角顶点C叠放在一起. (1)如图①,若CE是∠ACD的角平分线,那么CD是∠ECB的角平分线吗?并简述理由; (2)如图②,若∠ECD=α,CD在∠BCE的内部,请你猜想∠ACE与∠DCB是否相等?并简述理由; (3)在(2)的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.[来源:学§科§网] 解析:(1)首先根据直角三角板的特点得到∠ACD=90°,∠ECB=90°.再根据角平分线的定义计算出∠ECD和∠DCB的度数即可;(2)∠ACE与∠DCB相等,根据“等角的余角相等”即可得到答案;(3)根据角的和差关系进行等量代换即可. 解:(1)CD是∠ECB的角平分线.理由如下:∵∠ACD=90°,CE是∠ACD的角平分线,∴∠ECD=45°.∵∠ECB=90°,∴∠DCB=90°-45°=45°,∴∠ECD=∠DCB,∴CD是∠ECB的角平分线; (2)∠ACE=∠DCB.理由如下:∵∠ACD=90°,∠BCE=90°,∠ECD=α,∴∠ACE=90°-α,∠DCB=90°-α,∴∠ACE=∠DCB; (3)∠ECD+∠ACB=180°.理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB=∠ACD+∠ECB=90°+90°=180°. 方法总结:此题主要查考了角的计算,关键是根据图形分清角之间的和差关系. 三、板书设计 1.对顶角相等; 2.同角或等角的补角相等,同角或等角的余角相等. 本节课学习了对顶角及其性质.教学中可让学生自己画这些角,结合图形说出对顶角的特征.对顶角的识别是易错点,可以结合例题进行练习,让学生在学习中不断纠错,不断进步查看更多