高中数学必修3教案:2_备课资料(2_1_2 系统抽样)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高中数学必修3教案:2_备课资料(2_1_2 系统抽样)

备课资料 ‎ 系统抽样中如何对总体中的每个个体进行合理分段?‎ 分析:难点是不会对总体中的每个个体进行合理分段,其突破方法是结合实例操作体会.系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,得到所需样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理分段.‎ 若从容量为N的总体中抽取容量为n的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k,以便对总体编号进行分段.‎ ‎ 当是整数时,取k=为分段间隔即可,如N=100,n=20,则分段间隔k==5,也就是将100个个体平均分为5段(组);‎ ‎ 当不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N′能被n整除,这时分段间隔k=,如N=101,n=20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k==5,也就是说,只需将100个个体平均分为5段(组).‎ ‎ 一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.分段间隔=总体容量/样本容量,所以分段间隔×样本容量=总体容量,每段仅抽一个个体.‎ ‎ 上述过程中,总体中的每个个体被取出(或被剔除)的可能性相等,也就是每个个体不被选取(或不被剔除)的可能性也相等,所以在整个抽样过程中每个个体被抽取的机会仍然都相等,这说明使用系统抽样法抽取样本的过程是公平的.‎
查看更多

相关文章

您可能关注的文档