- 2021-04-15 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
新浙教版八年级上册数学知识点汇编
八年级第一学期数学知识点汇编 第一章 三角形的初步认识 一、三角形的基本概念 三角形:不在同一条直线上的三条线段首尾相接所组成的图形。 二、三角形的分类: 1.按角分:锐角三角形、直角三角形、钝角三角形(定义,区别)。 2.按边分:不等边三角形、等腰三角形、等边三角形。 三、三角形的基本性质 1.三角形的内角和是180°。 2.三角形的任何两边的和大于第三边(由两点之间线段最短得到)。 三角形的任何两边的差小于第三边 三角形的任何两边之和大于第三边大于两边之差。 应用:知两条确定第三条范围;知三条判断能否组成三角形;知四条及以上 3.三角形的外角:由三角形一条边的延长线和另一条相邻的边组成的角。 三角形的一个外角等于和他不相邻的两个内角的和(教材P7做一做)。 四、几条重要的线 1.三角形的角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和 对边中点;三条角平分线都在三角形内且相交于一点;等量关系式∠1=∠2=二分之一∠α ; 2.三角形的中线:连接一个顶点和它对边的中点的线段;三条中线都在三角形内且相交于一点;等量关系式AP=BP=二分之一AB 。等积三角形;周长差三角形 3.三角形的高;从三角形的一个顶点向它对边所在的直线作垂线段。 锐角三角形的三条高在三角形的内部相交于一点。 直角三角形的直角边上的高分别与另一条直角边重合,三条高在三角形的直角顶点处相交于一点。 钝角三角形中,夹钝角两边上的高都在三角形的外部,三条高在三角形的外部相交于一点。 会带来面积问题、直角、直角三角形 4. 线段的垂直平分线(中垂线):垂直并平分一条线段的直线。 中垂线性质:线段的中垂线上的点到线段两端点的距离相等。 逆定理:到线段两端的距离相等的点在这条线段的垂直平分线上。 5. 角平分线的性质定理:角平分线上的点到角两边的距离相等。 逆定理:角的内部,到角两边距离相等的点在这个角的平分线上。 五、全等三角形 1.全等图形:能够完全重合的两个图形。形状相同、大小相等的图形; 2.全等三角形:能够完全重合的两个三角形。 3. 对应顶点:能够相互重合的顶点; 对应边: 相互重合的边;有公共边的,公共边一定是对应边; 对应角:相互重合的角。有公共角的,角一定是对应角;有对顶角的,对顶角一定是对应角; 性质定理:全等三角形的对应角相等,对应边相等。注意“对应”二字。 12 4.全等三角形的判定条件 SSS——三边对应相等的两个三角形全等; SAS——一个角和夹这个角的两边对应相等的两个三角形全等; ASA——两个角和这两个角的夹边对应相等的两个三角形全等; AAS—— 两个角和其中一个角的对边对应相等的两个三角形全等。 问题:为什么SSA不可以判定? HL——直角三角形的斜边和一条直角边对应相等的两个直角三角形全等。 用符号≌表示两个三角形全等时,通常把对应顶点的字母写在对应的位置上。 (二)灵活运用全等判定定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA) ②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS) ②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或 ASA) ②夹等角的另一组边相等(SAS) 六、尺规作图 尺规作图:在几何作图中,我们把用没有刻度的直尺和圆规作图,简称尺规作图。 1.基本作图 作等量线段、作等量角、作线段的和差倍、作角的和差倍、 2.作线段的中垂线、作角的平分线、中垂线角平分线在一起作、 3.作三角形 知三边、知两边夹角、知两角夹边、知一边及该边上的高 作法:有规定名称时需格外注意字母的标注 注意务必考虑三角形的各要素(类比于三角形全等的判定条件)。 七、定义、命题与证明 1.定义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。 2.命题:定义:判断某一件事情的句子 结构:由条件和结论两部分组成。 句式改写:如果……那么…… 分类:真命题 通过推理的方式来判断、人们经过长期实践公认为正确的 假命题 通过举反例(具备命题的条件但不具备命题的结论的实例) 3.互逆命题 原命题、逆命题 互逆定理 原定理、逆定理 每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题。 4.证明:从命题的条件出发,根据已知的定义、基本事实、定理(包括推论)、一步一步推得结论成立的推理过程。 证明几何命题的格式:(1)按题意画出图形(2)分清命题的条件和结论,结合图形,在已知中写出条件,在求证中写出结论(3)在证明中写出推理过程。 在解决几何问题时,有时需要添加辅助线。添辅助线的过程要写入证明中,辅助线通常画成虚线。 12 第二章 特殊三角形 一、图形的轴对称 轴对称图形定义:一个沿着一条直线折叠后,直线两侧的部分能够互相重合图形。 对称轴:定义、位置的确定、条数、对称点、作图、 性质:对称轴垂直平分连结两个对称点的线段 图形的轴对称 定义、性质:成轴对称的两个图形是全等图形。 二、等腰三角形 1.等腰三角形的性质: 边——等腰三角形两腰相等; 角——等腰三角形两底角相等(即在同一个三角形中,等边对等角); 线——等腰三角形三线合一,这三线是指顶角的平分线、底边上的高线、底边上的中线,也就是说一条线段充当三种身份;是常添的辅助线 等腰三角形是轴对称图形,它的对称轴有1条或3条。 2.等腰三角形的判定: 边——有两条边相等的三角形是等腰三角形; (注意:有两腰相等的三角形是等腰三角形,这句话对吗?) 角——有两内角相等的三角形是等腰三角形(即在同一个三角形中,等角对等边)。 3.等边三角形的性质: 等边三角形各条边相等,各内角相等,且都等于60。;三线合一在每边上都成立。 等边三角形是轴对称图形,它有3条对称轴。 4.等边三角形的判定: 边——有三条边相等的三角形是等边三角形; 角——有三个角都是60。的三角形是等边三角形; 有两个角都是60。的三角形是等边三角形; 边角——有一个角是60。的等腰三角形是等边三角形。 三、直角三角形 1.直角三角形的性质: 角——直角三角形两锐角互余; 边——直角三角形斜边上的中线等于斜边的一半; 边——直角三角形两直角边的平方和等于斜边的平方(即勾股定理)。a2+b2=c2 30°角所对的直角边等于斜边的一半。 2.直角三角形的判定: 角——有一个角是直角的三角形是直角三角形; 角——有两个角互余的三角形是直角三角形; 边——较小两边的平方和等于最长边的平方的三角形是直角三角形。 边——一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,(但不能直接拿来判断某三角形是直角三角形,但有助于解题。) 3.直角三角形全等的判定: 边——斜边和一条直角边对应相等的两个直角三角形全等。 四、重点解读 12 1.学习特殊三角形,应重点分清性质与判定的区别,两者不能混淆。一般而言,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系那就是性质; 2.等腰三角形的腰是在已知一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,后有腰,因此在判定一个三角形是等腰三角形时千万不能将理由说成是“有两腰相等的三角形是等腰三角形”; 3.直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便; 4.勾股定理反映的是直角三角形两直角边和斜边之间的平方关系,解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“c”就认定是斜边。不要一看到直角三角形两边长为3和4,就认为另一边一定是5; 5.“HL”是仅适用于判定直角三角形全等的特殊方法,只有在已知两个三角形均是直角三角形的前提下,此方法才有效,当然,以前学过的“SSS”、“SAS”、“ASA”、“AAS”等判定一般三角形全等的方法对于直角三角形全等的判定同样有效。 切记!!! 两边及其中一边的对角对应相等的两个三角形不一定全等,也就是边边角,没有边边角定理。因此在证明全等时千万不要这样做。 本章解题时用到的主要数学思想方法: ⑴ 分类讨论思想(特别是在语言模糊的等腰三角形中所求的边、角、周长等) ⑵ 方程思想:主要用在折叠之后产生直角三角形时,运用勾股定理列方程;还有就是在等腰三角形中求角度,求边长 ⑶ 等面积法 (4)解决几何问题时,主要从几何图形边、角、线三方面入手,分别从题中、图中找已知条件 ïîî 12 第三章 一元一次不等式的知识点 一.不等式的概念: 一般的,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。 不等式中可以含有未知数,也可以不含) 用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式。 二、不等式的性质: 性质1:如果a>b, b >c那么a >c 性质2:如果a>b,那么a±c>b±c 即不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 性质3:如果a>b,c>0,那么ac>bc(或a/c>b/c) 如果a>b,c<0,那么ac查看更多