- 2021-04-15 发布 |
- 37.5 KB |
- 21页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学一轮专题精讲28数列概念及等差数列
第28讲 数列概念及等差数列 一.【课标要求】 1.数列的概念和简单表示法;通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数; 2.通过实例,理解等差数列的概念,探索并掌握等差数列的通项公式与前n项和的公式; 3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题。体会等差数列与一次函数的关系 二.【命题走向】 数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。对于本将来讲,客观性题目主要考察数列、等差数列的概念、性质、通项公式、前n项和公式等基本知识和基本性质的灵活应用,对基本的计算技能要求比较高 预测明年高考: 1.题型既有灵活考察基础知识的选择、填空,又有关于数列推导能力或解决生产、生活中的实际问题的解答题; 2.知识交汇的题目一般是数列与函数、不等式、解析几何、应用问题联系的综合题,还可能涉及部分考察证明的推理题 三.【要点精讲】 1.数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为 的项叫第项(也叫通项)记作; 数列的一般形式:,,,……,,……,简记作 。 (2)通项公式的定义:如果数列的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式 例如,数列①的通项公式是= (7,),数列②的通项公式是= ()。 说明:①表示数列,表示数列中的第项,= 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。例如,= =; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集(或它的有限子集)的函数当自变量从1开始依次取值时对应的一系列函数值……,,…….通常用来代替,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列 (5)递推公式定义:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个 数列的递推公式 2.等差数列 (1)等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母 表示。用递推公式表示为或。 (2)等差数列的通项公式:; 说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。 (3)等差中项的概念: 定义:如果,,成等差数列,那么叫做与的等差中项。其中 ,,成等差数列。 (4)等差数列的前和的求和公式:。 四.【典例解析】 题型1:数列概念 (安徽卷文)已知为等差数列,,则等于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B。 【答案】B 2.根据数列前4项,写出它的通项公式: (1)1,3,5,7……; (2),,,; (3),,,。 解析:(1)=2; (2)= ; (3)= 。 点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。 例2.数列中,已知, (1)写出,,; (2)是否是数列中的项?若是,是第几项? 解析:(1)∵,∴, ,; (2)令,解方程得, ∵,∴, 即为该数列的第15项。 点评:该题考察数列通项的定义,会判断数列项的归属 题型2:数列的递推公式 例3.如图,一粒子在区域上运动,在第一秒内它从原点运动到点,接着按图中箭头所示方向在x轴、y轴及其平行方向上运动,且每秒移动一个单位长度。 (1)设粒子从原点到达点时,所经过的时间分别为,试写出的通相公式; (2)求粒子从原点运动到点时所需的时间; (3)粒子从原点开始运动,求经过2004秒后,它所处的坐标。 解析:(1) 由图形可设,当粒子从原点到达时,明显有 … … ∴=, 。 , 。 , , 即。 (2)有图形知,粒子从原点运动到点时所需的时间是到达点所经过得时间 再加(44-16)=28秒, 所以秒。 (3)由2004,解得,取最大得n=44, 经计算,得=1980<2004,从而粒子从原点开始运动,经过1980秒后到达点,再向左运行24秒所到达的点的坐标为(20,44)。 点评:从起始项入手,逐步展开解题思维。由特殊到一般,探索出数列的递推关系式,这是解答数列问题一般方法,也是历年高考命题的热点所在。 例4.(1)已知数列适合:,,写出前五项并写出其通项公式; (2)用上面的数列,通过等式构造新数列,写出,并写出 的前5项 解:(1) ,,,,,……,; (2), ,,,,. 点评:会根据数列的前几项写出数列的一个通项公式,了解递推公式是给出数列的又一种重要方法,能根据递推公式写出数列的前几项。 题型3:数列的应用 例5.湖南省届十二校联考第一次考试 如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差. (1)设数列是公方差为的等方差数列,求和的关系式; (2)若数列既是等方差数列,又是等差数列,证明该数列为常数列; (3) 设数列是首项为,公方差为的等方差数列,若将这种顺 序的排列作为某种密码,求这种密码的个数. (1)解:由等方差数列的定义可知:………………5分 (2)证法一:∵是等差数列,设公差为,则 又是等方差数列,∴………………………………7分 ∴ 即, …………………………………10分 ∴,即是常数列.………………………………… ……11分 证法二:∵是等差数列,设公差为,则…… 又 是等方差数列,设公方差为,则………………7分 代入得,…… 同理有,…… 两式相减得:即,…………………………………10分 ∴,即是常数列.………………………………………………11分 证法三:(接证法二、) 由、得出:若,则是常数列 …………………8分 若, 则 是常数, ∴,矛盾…………10分 ∴ 是常数列. …………………11分 (3)依题意, , , ∴,或, ……………………………13分 即该密码的第一个数确定的方法数是,其余每个数都有“正”或“负”两种 确定方法,当每个数确定下来时,密码就确定了,即确定密码的方法数是种, 故,这种密码共种.…………………………………………………16分 。 点评:解决此类问题的思路是先将实际问题转化为数列模型来处理。 例6.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(_____)内 答案:140 85 解析:从题目所给数据规律可以看到:收缩压是等差数列.舒张压的数据变化也很有规律:随着年龄的变化,舒张压分别增加了3毫米、2毫米,…照此规律,60岁时的收缩压和舒张压分别为140;85. 点评:本题以实际问题为背景,考查了如何把实际生活中的问题转化为数学问题的能力.它不需要技能、技巧及繁杂的计算,需要有一定的数学意识,有效地把数学过程实施为数学思维活动。 题型4:等差数列的概念 例7.设Sn是数列{an}的前n项和,且Sn=n2,则{an}是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列 答案:B; 解法一:an= ∴an=2n-1(n∈N) 又an+1-an=2为常数,≠常数 ∴{an}是等差数列,但不是等比数列. 解法二:如果一个数列的和是一个没有常数项的关于n的二次函数,则这个数列一定是等差数列。 点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式an=Sn-Sn-1的推理能力.但不要忽略a1,解法一紧扣定义,解法二较为灵活 例8.设数列、、满足:,(n =1,2,3,…),证明:为等差数列的充分必要条件是为等差数列且(n=1,2,3,…) 证明:必要性:设数列是公差为的等差数列,则: ==-=0, ∴(n=1,2,3,…)成立; 又=6(常数)(n=1,2,3,…) ∴数列为等差数列。 充分性:设数列是公差为的等差数列,且(n=1,2,3,…), ∵……① ∴……② ①-②得: = ∵ ∴……③ 从而有……④ ④-③得:……⑤ ∵,,, ∴由⑤得:(n=1,2,3,…), 由此,不妨设(n=1,2,3,…),则(常数) 故……⑥ 从而……⑦ ⑦-⑥得:, 故(常数)(n=1,2,3,…), ∴数列为等差数列。 综上所述:为等差数列的充分必要条件是为等差数列且(n=1,2,3,…)。 证法二: 令An = a n+1- a n,由b n≤b n+1知a n - a n+2≤a n+1- a n+3。 从而a n+1- a n≥a n+3 - a n+2,即An≥An+2(n=1,2,3,…) 由c n = a n + 2a n+1 + 3a n+2, c n+1 = 4a n+1 + 2a n+2 - 3 a n+3得 c n+1-c n=( a n+1- a n+2(a n+2- a n+1)+3(a n+3 - a n+2),即 An+2An+1+3An+2=d2. ⑥ 由此得 An+2+2An+3+3An+2=d2. ⑦ ⑥-⑦得 (An-An+2)+2(An+1- An+3)+3(An+2- An+4)=0 ⑧ 因为An-An+2≥0,An+1- An+3≥0,An+2- An+4≥0, 所以由⑧得An-An+2=0(n=1,2,3,…)。 于是由⑥得 4An+2An+1=An+1+2An+2+3An+2=d2, ⑨ 从而 2An+4An+1=4An+1+2An+2=d2 ⑩ 由⑨和⑩得4An+2An+1=2An+4An+1,故An+1= An ,即 a n+2- a n+1= a n+1- a n(n=1,2,3,…), 所以数列{a n}是等差数列。 点评:该题考察判断等差数列的方法,我们要讲平时积累的方法巧妙应用,有些结论可以起到事半功倍的效果 题型5:等差数列通项公式 例9.(天津卷文)已知等差数列的公差d不为0,设 (Ⅰ)若 ,求数列的通项公式; (Ⅱ)若成等比数列,求q的值。 (Ⅲ)若 (1)解:由题设, 代入解得,所以 (2)解:当成等比数列,所以,即,注意到,整理得 (3)证明:由题设,可得,则 ① ② ①-②得, ①+②得, ③ ③式两边同乘以 q,得 所以 (3)证明: = 因为,所以 若,取i=n, 若,取i满足,且, 由(1)(2)及题设知,,且 ① 当时,,由, 即, 所以 因此 ② 当时,同理可得因此 综上, 【考点定位】本小题主要考查了等差数列的通项公式,等比数列通项公式与前n项和等基本知识,考查运算能力和推理论证能力和综合分析解决问题的能力 例10.已知等比数列的各项为不等于1的正数,数列满足,设。 (1)求数列的前多少项和最大,最大值为多少? (2)试判断是否存在自然数M,使当时,恒成立?若存在,求出相应的M,若不存在,请说明理由; (3)令,试判断数列的增减性? 解:(1)由已知得: 设等比数列{xn}的公比为q(q≠1) 由得为等差数列,设公差为d ∵,∴d=-2; ∴ 设前k项为最大,则 ∴前11项和前12项和为最大,其和为132 (2)xn=a12-n,n∈N*; 若xn>1,则a12-n>1 当时,n<12,显然不成立 ; 当 ∴存在M=12,13,14,…,当时, (3)an= ∵ ∴∴时数列{an}为递减数列 点评:该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注意观察规律 题型6:等差数列的前n项和公式 例11.(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A.13项 B.12项 C.11项 D.10项 (2)设数列{an }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A.1 B.2 C.4 D.6 (3))设Sn是等差数列{an}的前n项和,若=,则=( ) A. B. C. D. 解析:(1)答案:A 设这个数列有n项 ∵ ∴ ∴n=13 (2)答案:B 前三项和为12,∴a1+a2+a3=12,∴a2==4 a1·a2·a3=48,∵a2=4,∴a1·a3=12,a1+a3=8, 把a1,a3作为方程的两根且a1<a3, ∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选B. (3)答案为A; 点评:本题考查了数列等差数列的前n项和公式的运用和考生分析问题、解决问题的能力 例12.(1)设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{}的前n项和,求Tn。 (2)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100. (Ⅰ)求数列{bn}的通项bn; (Ⅱ)设数列{an}的通项an=lg(1+),记Sn是数列{an}的前n项和,试比较Sn与lgbn+1的大小,并证明你的结论。 解析:(1)设等差数列{an}的公差为d,则 Sn=na1+n(n-1)d.∴S7=7,S15=75, ∴即 解得a1=-2,d=1.∴=a1+(n-1)d=-2+(n-1)。 ∵, ∴数列{}是等差数列,其首项为-2,公差为, ∴Tn=n2-n. (2)(Ⅰ)设数列{bn}的公差为d,由题意得 解得 ∴bn=2n-1. (Ⅱ)由bn=2n-1,知 Sn=lg(1+1)+lg(1+)+…+lg(1+) =lg[(1+1)(1+)…(1+)], lgbn+1=lg. 因此要比较Sn与lgbn+1的大小,可先比较(1+1)(1+)…(1+)与的大小. 取n=1,有(1+1)>, 取n=2,有(1+1)(1+)>,…… 由此推测(1+1)(1+)…(1+)>. ① 若①式成立,则由对数函数性质可断定:Sn>lgbn+1。 下面用数学归纳法证明①式。 (i)当n=1时已验证①式成立。 (ii)假设当n=k(k≥1)时,①式成立,即(1+1)(1+)…(1+)>. 那么,当n=k+1时,(1+1)(1+)…(1+)[1+]> ·(1+)=(2k+2)。 ∵[(2k+2)]2-()2 =, ∴. 因而 这就是说①式当n=k+1时也成立. 由(i),(ii)知①式对任何正整数n都成立. 由此证得:Sn>lgbn+1。 评述:本题主要考查等差数列的求和公式的求解和应用,对一些综合性的问题要先理清思路再行求解 题型7:等差数列的性质及变形公式 例13.(1)设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A.d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最大值 (2)等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为( ) A.130 B.170 C.210 D.260 解析:(1)答案:C; 由S5查看更多