高中数学必修1公开课教案1_3_1 单调性与最大(小 )值 第1课时
1.3 函数的基本性质
1.3.1 单调性与最大(小)值
整体设计
教学分析
在研究函数的性质时,单调性和最值是一个重要内容.实际上,在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数增减性的定义,对于函数增减性的判断也主要根据观察图象得出,而本小节内容,正是初中有关内容的深化和提高:给出函数在某个区间上是增函数或减函数的定义,明确指出函数的增减性是相对于某个区间来说的,还说明判断函数的增减性既有从图象上进行观察的较为粗略的方法,又有根据定义进行证明的较为严格的方法、最好根据图象观察得出猜想,用推理证明猜想的正确性,这样就将以上两种方法统一起来了.
由于函数图象是发现函数性质的直观载体,因此,在本节教学时可以充分使用信息技术创设教学情境,以利于学生作函数图象,有更多的时间用于思考、探究函数的单调性、最值等性质.还要特别重视让学生经历这些概念的形成过程,以便加深对单调性和最值的理解.
三维目标
1.函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛,学会运用函数图象理解和研究函数的性质.
2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力.
3.通过实例,使学生体会、理解到函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识.
4.能够用函数的性质解决日常生活中的简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.
重点难点
教学重点:函数的单调性和最值.
教学难点:增函数、减函数、奇函数、偶函数形式化定义的形成.
课时安排
2课时
设计方案(一)
教学过程
第1课时 函数的单调性
导入新课
思路1.德国有一位著名的心理学家名叫艾宾浩斯(Hermann Ebbinghaus,1850~1909),他以自己为实验对象,共做了163次实验,每次实验连续要做两次无误的背诵.经过一定时间后再重学一次,达到与第一次学会的同样的标准.他经过对自己的测试,得到了一些数据.
时间间隔t
0分钟
20分钟
60分钟
8~9小时
1天
2天
6天
一个月
记忆量y(百分比)
100%
58.2%
44.2%
35.8%
33.7%
27.8%
25.4%
21.1%
观察这些数据,可以看出:记忆量y是时间间隔t的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图象的草图(这就是著名的艾宾浩斯曲线).从左向右看,图象是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(可以借助信息技术画图象)
图1-3-1-1
学生:先思考或讨论,回答:记忆量y随时间间隔t的增大而增大;以时间间隔t为x轴,以记忆量y为y轴建立平面直角坐标系,描点连线得函数的草图——艾宾浩斯遗忘曲线如图1-3-1-1所示.
遗忘曲线是一条衰减曲线,它表明了遗忘的规律.随着时间的推移,记忆保持量在递减,刚开始遗忘速度最快,我们应利用这一规律,在学习新知识时一定要及时复习巩固,加深理解和记忆.教师提示、点拨,并引出本节课题.
思路2.在第23届奥运会上,中国首次参加就获15枚金牌;在第24届奥运会上,中国获5枚金牌;在第25届奥运会上,中国获16枚金牌;在第26届奥运会上,中国获16枚金牌;在第27届奥运会上,中国获28枚金牌;在第28届奥运会上,中国获32枚金牌.按这个变化趋势,2008年,在北京举行的第29届奥运会上,请你预测一下中国能获得多少枚金牌?
学生回答(只要大于32就可以算准确),教师:提示、点拨,并引出本节课题.
推进新课
新知探究
提出问题
①如图1-3-1-2所示为一次函数y=x,二次函数y=x2和y=-x2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律?
图1-3-1-2
②函数图象上任意点P(x,y)的坐标有什么意义?
③如何理解图象是上升的?
④对于二次函数y=x2,列出x,y的对应值表(1).完成表(1)并体会图象在y轴右侧上升.
x
-4
-3
-2
-1
0
1
2
3
4
f(x)=x2
表(1)
⑤在数学上规定:函数y=x2在区间(0,+∞)上是增函数.谁能给出增函数的定义?
⑥增函数的定义中,把“当x1
x2时,都有f(x1)>f(x2)”,这样行吗?
⑦增函数的定义中,“当x1x2时,都有f(x1)>f(x2)”都是相同的不等号“>”,也就是说前面是“>”,后面也是“>”,步调一致.因此我们可以简称为:步调一致增函数.
⑦函数值随着自变量的增大而增大;从左向右看,图象是上升的.
⑧从左向右看,图象是上升的.
⑨一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数.简称为:步调不一致减函数.减函数的几何意义:从左向右看,图象是下降的.函数值变化趋势:函数值随着自变量的增大而减小.总结:如果函数y=f(x)在区间D上是增函数(或减函数),那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调递增(或减)区间.
⑩函数y=f(x)在区间D上,函数值的变化趋势是随自变量的增大而增大(减小),几何意义:从左向右看,图象是上升(下降)的.
应用示例
思路1
例1如图1-3-1-3是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?
图1-3-1-3
活动:教师提示利用函数单调性的几何意义.学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.图象上升则在此区间上是增函数,图象下降则在此区间上是减函数.
解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.
点评:本题主要考查函数单调性的几何意义,以及图象法判断函数单调性.图象法判断函数的单调性适合于选择题和填空题.如果解答题中给出了函数的图象,通常用图象法判断单调性.函数的图象类似于人的照片,我们能根据人的照片来估计其身高,同样我们根据函数的图象可以分析出函数值的变化趋势即单调性.
图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.
变式训练
课本P32练习1、3.
例2物理学中的玻意耳定律p=(k为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强p将增大.试用函数的单调性证明.
活动:学生先思考或讨论,再到黑板上书写.当学生没有证明思路时,教师再提示,及时纠正学生解答过程出现的问题,并标出关键的地方,以便学生总结定义法的步骤.体积V减少时,压强p将增大是指函数p=是减函数;刻画体积V减少时,压强p将增大的方法是用不等式表达.已知函数的解析式判断函数的单调性时,常用单调性的定义来解决.
解:利用函数单调性的定义只要证明函数p=在区间(0,+∞)上是减函数即可.
点评:本题主要考查函数的单调性,以及定义法判断函数的单调性.
定义法判断或证明函数的单调性的步骤是第一步:在所给的区间上任取两个自变量x1和x2,通常令x10.∴f(x1)-f(x2)<0.∴f(x1)2m-x2≥a,
f(x1)-f(x2)=f(2m-x1)-f(2m-x2).
又∵函数y=f(x)在[a,b]上是增函数,∴f(2m-x1)-f(2m-x2)>0.
∴f(x1)-f(x2)>0.∴f(x1)>f(x2).
∴函数y=f(x)在区间[2m-b,2m-a]上是减函数.
∴当函数y=f(x)在对称轴直线x=m的右侧一个区间[a,b]上是增函数时,其在[a,b]关于直线x=m的对称区间[2m-b,2m-a]上是减函数,即单调性相反.
因此有结论:如果函数y=f(x)的图象关于直线x=m对称,那么函数y=f(x)在对称轴两侧的对称单调区间内具有相反的单调性.
点评:本题通过归纳——猜想——证明得到了正确的结论,这是我们认识世界发现问题的主要方法,这种方法的难点是猜想,突破路径是寻找共同的特征.本题作为结论记住,可以提高解题速度.图象类似于人的照片,看见人的照片就能估计这个人的身高、五官等特点,同样根据函数的图象也能观察出函数的性质特征.这需要有细致的观察能力.
变式训练
函数y=f(x)满足以下条件:
①定义域是R;
②图象关于直线x=1对称;
③在区间[2,+∞)上是增函数.
试写出函数y=f(x)的一个解析式f(x)=(只需写出一个即可,不必考虑所有情况).
活动:根据这三个条件,画出函数y=f(x)的图象简图(只要能体现这三个条件即可),再根据图象简图,联系猜想基本初等函数及其图象和已有的解题经验写出.
解:定义域是R的函数解析式通常不含分式或根式,常是整式;图象关于直线x=1对称的函数解析式满足:f(x)=f(2-x),基本初等函数中有对称轴的仅有二次函数,则由①②想到了二次函数;结合二次函数的图象,在区间[2,+∞)上是增函数说明开口必定向上,且正好满足二次函数的对称轴直线x=1不在区间[2,+∞)内,故函数的解析式可能是y=a(x-1)2+b(a>0).
结合二次函数的图象和性质,可知这三条都可满足开口向上的抛物线,故有:
形如y=a(x-1)2+b(a>0),或为y=a|x-1|+b(a>0)等都可以,答案不唯一.
知能训练
课本P32练习2.
【补充练习】
1.利用图象法写出基本初等函数的单调性.
解:①正比例函数:y=kx(k≠0)
当k>0时,函数y=kx在定义域R上是增函数;当k<0时,函数y=kx在定义域R上是减函数.
②反比例函数:y=(k≠0)
当k>0时,函数y=的单调递减区间是(-∞,0),(0,+∞),不存在单调递增区间;当k<0时,函数y=的单调递增区间是(-∞,0),(0,+∞),不存在单调递减区间.
③一次函数:y=kx+b(k≠0)
当k>0时,函数y=kx+b在定义域R上是增函数;当k<0时,函数y=kx+b在定义域R上是减函数.
④二次函数:y=ax2+bx+c(a≠0)
当a>0时,函数y=ax2+bx+c的单调递减区间是(-∞,],单调递增区间是[,+∞);
当a<0时,函数y=ax2+bx+c的单调递减区间是[,+∞),单调递增区间是(-∞,].
点评:以上基本初等函数的单调性作为结论记住,可以提高解题速度.
2.已知函数y=kx+2在R上是增函数,求实数k的取值范围.
答案:k∈(0,+∞).
3.二次函数f(x)=x2-2ax+m在(-∞,2)上是减函数,在(2,+∞)上是增函数,求实数a的值.
答案:a=2.
4.2005年全国高中数学联赛试卷,8已知f(x)是定义在(0,+∞)上的减函数,若f(2a2+a+1)1.
∵f(x)在(0,+∞)上是减函数,
∴2a2+a+1>3a2-4a+1.∴a2-5a<0.
∴00)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?
图1-3-1-10
设计意图:使学生体会到用数量大小关系严格表述函数单调性的必要性.
问题④:如何从解析式的角度说明f(x)=x2在[0,+∞)上为增函数?
设计意图:把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习作好铺垫.
问题⑤:你能用准确的数学符号语言表述出增函数的定义吗?
设计意图:让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.
活动:
先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
引导方法与过程:问题①:引导学生进行分类描述图象是上升的、下降的(增函数、减函数),同时明确函数的图象变化(单调性)是对定义域内某个区间而言的,是函数的局部性质.
问题②:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.
学生的困难是难以确定分界点的确切位置.
问题③:通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
问题④:对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1、x2.
问题⑤:师生共同探究:利用不等式表示变大或变小,得出增函数严格的定义,然后学生类比得出减函数的定义.
归纳总结:1.函数单调性的几何意义:如果函数y=f(x)在区间D上是增(减)函数,那么在区间D上的图象是上升的(下降的).
2.函数单调性的定义:略.可以简称为步调一致增函数,步调相反减函数.
讨论结果:①(1)函数y=x+2,在整个定义域内y随x的增大而增大;函数y=-x+2,在整个定义域内y随x的增大而减小.(2)函数y=x2,在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.(3)函数y=,在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.
②如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y越来越小,我们说函数f(x)在该区间上为减函数.
③不能.
④(1)在给定区间内取两个数,例如2和3,因为22<32,所以f(x)=x2在[0,+∞)上为增函数.
(2)仿(1),取多组数值验证均满足,所以f(x)=x2在[0,+∞)上为增函数.
(3)任取x1、x2∈[0,+∞),且x10,能断定函数f(x)在区间(a,b)上是增函数吗?
活动:引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数f(x)=x在[0,+∞)上是增函数.
讨论结果:能.
例2用计算机画出函数y=的图象,根据图象指出单调区间,并用定义法证明.
思路分析:在图象上观察在哪个区间函数图象是上升的,在哪个区间函数图象是下降的,借助于单调性的几何意义写出单调区间,再用定义证明.
教师画出图象,学生回答,如果遇到障碍,就提示利用函数单调性的几何意义写出单调区间.
点评:讨论函数单调性的三部曲:
第一步,画函数的图象;
第二步,借助单调性的几何意义写出单调区间;
第三步,利用定义加以证明.
答案:略.
变式训练
画出函数y=的图象,根据图象指出单调区间.
活动:教师引导学生利用变换法(也可以用计算机)画出图象,根据单调性的几何意义写出单调区间,再利用定义法证明.
答案:略.
知能训练
课本P32练习2.
拓展提升
试分析函数y=x+的单调性.
活动:先用计算机画出图象,找出单调区间,再用定义法证明.
答案:略.
课堂小结
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.
(2)证明方法和步骤:设元、作差、变形、断号、定论.
(3)数学思想方法:数形结合.
(4)函数单调性的几何意义是:函数值的变化趋势,即图象是上升的或下降的.
设计感想
本节课是函数单调性的起始课,采用教师启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识.
考虑到部分学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔.
作业:课本P39习题1.3A组2、3、4.
(设计者:张新军)