北师大版数学六年级下册《反比例》PPT课件 (10)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

北师大版数学六年级下册《反比例》PPT课件 (10)

反比例 北师大版六年级数学下册 篱笆镇中心小学宋亚荣 教学目标: 1. 结合 “ 长方形相邻两边的边长,路程,时间与速度 ” 等情景经历反比例意义建构的过程,能从变化中看到 “ 不变 ” ,认识反比例。 2. 经历比较 , 分析,归纳等数学活动 , 提高分析比较 , 归纳概括能力 , 初步体会函数思想。 复习导入 1. 什么是成正比例的量 ? 2. 怎样判定两个量是否成正比例? 这两个量成正比例吗 ? (1)速度一定,路程与时间。 (2)征订同一种刊物,征订数量和总价。 (3)一个人的年龄和体重。 1 . 用 X,y 表示长方形相邻两边的边长,表 (1) 是面积为 24 平方厘米的长方形相邻两边边长的变化关系,表 ( 2 ) 是周长是 24 厘米的长方形相邻两边边长的变化关系。请把表格填写完整,并说说你分别发现了什么。(单位: cm) x 1 2 3 4 y 24 12 表 1 表 2 x 1 2 3 4 y 11 10 8 9 8 6 表 1 中相邻两边边长的积相等,表 2 中相邻两边边长的和相等。 说一说 表 1 和表 2 中,长方形相邻两边边长之间的变化规律相同吗? 2. 王叔叔要去游长城 , 不同的交通工具所需时间如下 , 请把表填完整。 时间 / 时 10 60 80 12 2 1.5 … … 速度 / 千米 自行车 公共汽车 小汽车 速度 扩大 , 所需时间 缩小 。 速度 缩小 , 所需时间 扩大 。 速度和所需时间是两种 相关联的量 ,所需时间是随着速度的变化而变化的。 80×1.5 = 120 2. 王叔叔要去游长城 , 不同的交通工具所需时间如下 , 请把表填完整。 时间 / 时 10 60 80 12 2 1.5 … … 速度 / 千米 自行车 公共汽车 小汽车 10×12 = 120 60×2 = 120 ( 一定 ) 速度 × 时间=路程 对应的速度和所需时间的积总是一定的: 3. 有 600 毫升果汁 , 可平均分成若干杯。请把下表填完整 分的杯数 / 杯 每杯的果汁量 /ml 6 5 4 3 2 100 … … 120 150 200 300 ( 2 )分的杯数是怎样随着每杯的果 汁量变化的 ? ( 1 )表中有哪两种量? (3) 变化过程中,什么不变 ? 分的杯数 / 杯 每杯的果汁量 /ml 6 5 4 3 2 100 … … 120 150 200 300 果汁总量不变,也就是对应的每杯果汁量和分的杯数的积相等。 每杯果汁量×分的杯数 = 果汁总量(一定) 速度 × 时间=路程(一定) 每杯的果汁量 × 杯数=果汁总量(一定) 两种相关联的量 , 一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的 积 一定 , 这两种量就叫做 成反比例的量 , 它们的关系叫做 反比例关系 。 观察第 2 题和第 3 题,它们有什么相同的地方? 如果用 x 和 y 表示两种相关联的量,用 k 表示它们的乘积,那么上面这种数量关系式可以怎样写呢 ?  y x = k ( 一定) x 和 y 叫做成反比例的量,它们的关系叫做成反比例的关系   。 判断两种量是否成反比 例的关键是什么? 判定两个量是不是成反比例,关键是看它们的 积 是不是 一定 。 买苹果的总钱数一定,苹果的单价与数量成反比例吗?你是怎么想的?与同伴交流。 张伯伯骑自行车从家 到县城,骑自行车的速 度和所需的时间。 判断下面的两种量是不是成反比例,并说明理由。 因为速度 × 时间 = 路程(一定),所以骑自行车的速度和所需的时间成反比例。 骑车的速度和所需时间成反比例。 奇思读一本书,已读的页数与剩下的页数的情况如下。 已读的页数 1 2 3 4 5 6 剩下的页数 79 78 77 76 75 74 已读的页数与剩下的页数成反比例吗?为什么? 请举一个成反比例的例子,并与同伴交流。 课堂检测 想一想,填一填。 1. 两种 相关联的量 , 一种量变化 , 另一种量也随着 ( ), 两种量中相对应的两个数的积一定 , 这两种量叫做 ( ) 它们 的关系叫作 ( ) 。 变化 反比例关系 反比例的量 课堂检测 想一想,填一填。 2. 如果 xy= k( 一定),那么 x 和 y 之间的关系是( )关系 。 反比例 课堂检测 想一想,填一填。 3. 小 明做 12 道数学题 , 做完的题和没做完的题 ( ) 比例。 不成 这节课学习的是什么内容? 1. 反比例的意义是什么? 2. 判断两种量是不是成反比例,关键是什么? 谢谢 欢迎指导
查看更多

相关文章

您可能关注的文档