- 2021-04-14 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
山东高考理科数学试题卷word版
2011年普通高等学校招全国统一考试(山东卷) 文科数学 本卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。满分150分。考试用时120分钟。考试结束后,将本试卷与答题卡一并交回。 注意事项: 1. 答题前,考生务必用0.5毫米的签字笔将自己的姓名、座号、准考证号、县区和科类填写在自己的答题卡和试卷规定的位置上。 2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。答案不能打在试卷上。 3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。不按以上要求最大的答案无效。 4. 第Ⅱ卷第六题为选做题,考生须从所给(一)(二)两题中任选一题作答,不能全选。 参考公式: 柱体的体积公式,其中表示柱体的底面积,表示柱体的高 球的体积公式V=πR, 其中R是球的半径 球的表面积公式:S=4π,其中R是球的半径 用最小二乘法求线性回归方程系数公式 如果事件互斥,那么.).如果事件相互独立,那么 第1卷(共60分) 一.选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选择题只有一项是符合题目要求的。 (A) (2) 复数= 为虚数单位,在复平面内对应的点所在象限为 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (3) 若点在函数的图像上,则的值为 (A)0 (B) (C)1 (D) () ()的函数图象??轴对称“是”是奇函数的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要 (4)某产品的广告费用 销售额的统计数据如下表; 跟据上表可得回归 据此模型预报广告费用为6万元是销售额为 (A)42.6万元 (B)65.7万元 (C) 67.7万元 (D)72.0万元 ( )函数的图象大致是 (8)若函数在区间上单调递增,在区间 上单调递减,则m (A)3 (B)2 (C) (D) (9) (10)已知是上最小正周期为2的周期函数,且则函数的图象在区间上与轴的交点的个数为 (A)G (B)7 (C)R (D)9 (11)右图是场合宽分别相等的两个矩形,给定下列三个命题:(1)存在三棱柱,其正(主)视图、俯视图如右图;(2)存在四棱柱,其正(主)视图、俯视图如右图;(3)存在圆柱其正(主)视图、俯视图如右图;其中真命题的个数是 (A)3 (B)2 (C)1 (D)0 (12)设是平面直角坐标系中两两不同的四点,若,,且=2,则称调和分割,一直平面上的点调和分割点,则下面说法正确的是 (A)可能是线段的中点 (B) (C) 可能同时在线段上 (D) 不可能同时在线段的延长线上 第Ⅱ卷(共90分) 二、填空题:本大题共4小题,每小题4分,共16分. (Ⅰ)按右图所示的程序框图,输入 2,m 3,n 5, 则输出的的值是 . (Ⅱ)若式的常数项为60,则常数的值为 . 根据以上事实,由归纳推理可得: 当且时, (16)已知函数b(a>0,且a≠1).当2<a<3<b<4时,函数的零点则n=____________________. 三、解答题:本小题共6小题,共74分。 (17)(本小题满分12分) 在ABC中,内角A,B,C的对边分别为a,b,c,已知 (Ⅰ)求的值; (Ⅱ)若,b=-2,求△ABC的面积S. (18)(本小题满分12分) 红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率; (Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望. (19)(本小题满分12分) 在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EA ⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD上的中点,求证:GM ∥平面ABFE; (Ⅱ)若AC=BC-2AE,求平面角ABFC的大小. (20)本小题满分20分) 等比数列中.分别是下表第一、二、三行中的某一个数。且中的任何两个数不在下表的同一列. 第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行 9 8 18 (Ⅰ)求数列的通项公式; (Ⅱ)如数列满足求数列的前项和. (21)(本小题满分12分) 某企业拟建如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两边均为半球形,按照设计要求容器的容积为立方米,且。假设该容器的建造费用仅与其表面积有关。已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元。该容器的建造费用为千元。 (Ⅰ)写出关于r的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r (22)(本小题满分14分) 已知直线l与椭圆C: 交于P.Q两不同点,且△OPQ的面积S=,其中Q为坐标原点。 (Ⅰ)证明 (Ⅱ)设线段PQ的中点为M,求的最大值; (Ⅲ)椭圆C上是否存在点D,E,G,使得若存在,判断△DEG的形状;若不存在,请说明理由。查看更多