- 2021-04-14 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考汇编推理与证明
数 学 M单元 推理与证明 M1 合情推理与演绎推理 8.[2014·北京卷] 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A.2人 B.3人 C.4人 D.5人 8.B 20.[2014·北京卷] 对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记 T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n), 其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak两个数中最大的数. (1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值; (2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小; (3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论) 20.解:(1)T1(P)=2+5=7, T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8. (2)T2(P)=max{a+b+d,a+c+d}, T2(P′)=max{c+d+b,c+a+b}. 当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b. 因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′). 当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b. 因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′). 所以无论m=a还是m=d,T2(P)≤T2(P′)都成立. (3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小, T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52. 15.、[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系: ①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________. 15.6 [解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确; 若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4. 若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4; 若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2; 综上所述,满足条件的有序数组的个数为6. 多挣一分,多超千人! 19.、[2014·广东卷] 设数列{an}的前n项和为Sn,满足Sn=2nan+1-3n2-4n,n∈N*,且S3=15. (1)求a1,a2,a3的值; (2)求数列{an}的通项公式. 14.[2014·新课标全国卷Ⅰ] 甲、乙、丙三位同学被问到是否去过A,B,C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市; 乙说:我没去过C城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________. 14.A 14.[2014·陕西卷] 观察分析下表中的数据: 多面体 面数(F) 顶点数(V) 棱数(E) 三棱柱 5 6 9 五棱锥 6 6 10 立方体 6 8 12 猜想一般凸多面体中F,V,E所满足的等式是________. 14.F+V-E=2 M2 直接证明与间接证明 4.[2014·山东卷] 用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是( ) A. 方程x2+ax+b=0没有实根 B. 方程x2+ax+b=0至多有一个实根 C. 方程x2+ax+b=0至多有两个实根 D. 方程x2+ax+b=0恰好有两个实根 4.A M3 数学归纳法 21.、、[2014·安徽卷] 设实数c>0,整数p>1,n∈N*. (1)证明:当x>-1且x≠0时,(1+x)p>1+px; (2)数列{an}满足a1>c,an+1=an+a,证明:an>an+1>c. 21.证明:(1)用数学归纳法证明如下. ①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立. ②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立. 当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x. 所以当p=k+1时,原不等式也成立. 综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立. (2)方法一:先用数学归纳法证明an>c. ①当n=1时,由题设知a1>c成立. ②假设n=k(k≥1,k∈N*)时,不等式ak>c成立. 多挣一分,多超千人! 由an+1=an+a易知an>0,n∈N*. 当n=k+1时,=+a= 1+. 由ak>c>0得-1<-<<0. 由(1)中的结论得=>1+p· =. 因此a>c,即ak+1>c, 所以当n=k+1时,不等式an>c也成立. 综合①②可得,对一切正整数n,不等式an>c均成立. 再由=1+可得<1, 即an+1查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档