北京市高考数学试卷文科

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

北京市高考数学试卷文科

‎2016年北京市高考数学试卷(文科)‎ 参考答案与试题解析 ‎ ‎ 一.选择题(共8小题)‎ ‎1.(2016•北京)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=(  )‎ A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}‎ ‎【考点】交集及其运算.‎ ‎【专题】计算题;转化思想;综合法;集合.‎ ‎【分析】由已知条件利用交集的定义能求出A∩B.‎ ‎【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},‎ ‎∴A∩B={x|2<x<3}.‎ 故选:C.‎ ‎【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集的定义的合理运用.‎ ‎ ‎ ‎2.(2016•北京)复数=(  )‎ A.i B.1+i C.﹣i D.1﹣i ‎【考点】复数代数形式的乘除运算.‎ ‎【专题】计算题;转化思想;数系的扩充和复数.‎ ‎【分析】将分子分线同乘2+i,整理可得答案.‎ ‎【解答】解:===i,‎ 故选:A ‎【点评】本题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题.‎ ‎ ‎ ‎3.(2016•北京)执行如图所示的程序框图,输出s的值为(  )‎ A.8 B.9 C.27 D.36‎ ‎【考点】程序框图.‎ ‎【专题】计算题;操作型;算法和程序框图.‎ ‎【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.‎ ‎【解答】解:当k=0时,满足进行循环的条件,故S=0,k=1,‎ 当k=1时,满足进行循环的条件,故S=1,k=2,‎ 当k=2时,满足进行循环的条件,故S=9,k=3,‎ 当k=3时,不满足进行循环的条件,‎ 故输出的S值为9,‎ 故选:B ‎【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.‎ ‎ ‎ ‎4.(2016•北京)下列函数中,在区间(﹣1,1)上为减函数的是(  )‎ A.y= B.y=cosx C.y=ln(x+1) D.y=2﹣x ‎【考点】函数单调性的判断与证明.‎ ‎【专题】函数思想;综合法;函数的性质及应用.‎ ‎【分析】根据函数单调性的定义,余弦函数单调性,以及指数函数的单调性便可判断每个选项函数在(﹣1,1)上的单调性,从而找出正确选项.‎ ‎【解答】解:A.x增大时,﹣x减小,1﹣x减小,∴增大;‎ ‎∴函数在(﹣1,1)上为增函数,即该选项错误;‎ B.y=cosx在(﹣1,1)上没有单调性,∴该选项错误;‎ C.x增大时,x+1增大,ln(x+1)增大,∴y=ln(x+1)在(﹣1,1)上为增函数,即该选项错误;‎ D.;‎ ‎∴根据指数函数单调性知,该函数在(﹣1,1)上为减函数,∴该选项正确.‎ 故选D.‎ ‎【点评】考查根据单调性定义判断函数在一区间上的单调性的方法,以及余弦函数和指数函数的单调性,指数式的运算.‎ ‎ ‎ ‎5.(2016•北京)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为(  )‎ A.1 B.2 C. D.2‎ ‎【考点】圆的标准方程;点到直线的距离公式.‎ ‎【专题】计算题;转化思想;综合法;直线与圆.‎ ‎【分析】先求出圆(x+1)2+y2=2的圆心,再利用点到到直线y=x+3的距离公式求解.‎ ‎【解答】解:∵圆(x+1)2+y2=2的圆心为(﹣1,0),‎ ‎∴圆(x+1)2+y2=2的圆心到直线y=x+3的距离为:‎ d==.‎ 故选:C.‎ ‎【点评】本题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式和圆的性质的合理运用.‎ ‎ ‎ ‎6.(2016•北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(  )‎ A. B. C. D.‎ ‎【考点】古典概型及其概率计算公式.‎ ‎【专题】概率与统计.‎ ‎【分析】从甲、乙等5名学生中随机选出2人,先求出基本事件总数,再求出甲被选中包含的基本事件的个数,同此能求出甲被选中的概率.‎ ‎【解答】解:从甲、乙等5名学生中随机选出2人,‎ 基本事件总数n==10,‎ 甲被选中包含的基本事件的个数m==4,‎ ‎∴甲被选中的概率p===.‎ 故选:B.‎ ‎【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.‎ ‎ ‎ ‎7.(2016•北京)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x﹣y的最大值为(  )‎ A.﹣1 B.3 C.7 D.8‎ ‎【考点】简单线性规划.‎ ‎【专题】计算题;规律型;数形结合;转化思想;不等式.‎ ‎【分析】平行直线z=2x﹣y,判断取得最值的位置,求解即可.‎ ‎【解答】解:如图A(2,5),B(4,1).若点P(x,y)在线段AB上,‎ 令z=2x﹣y,则平行y=2x﹣z当直线经过B时截距最小,Z取得最大值,‎ 可得2x﹣y的最大值为:2×4﹣1=7.‎ 故选:C.‎ ‎【点评】本题考查线性规划的简单应用,判断目标函数经过的点,是解题的关键.‎ ‎ ‎ ‎8.(2016•北京)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.‎ 学生序号 ‎ ‎1 ‎ ‎ 2‎ ‎3 ‎ ‎ 4‎ ‎5 ‎ ‎ 6‎ ‎7 ‎ ‎ 8‎ ‎9 ‎ ‎ 10‎ ‎ 立定跳远(单位:米)‎ ‎ 1.96‎ ‎1.92‎ ‎ 1.82‎ ‎ 1.80‎ ‎ 1.78‎ ‎ 1.76‎ ‎ 1.74‎ ‎ 1.72‎ ‎ 1.68‎ ‎ 1.60‎ ‎ 30秒跳绳(单位:次)‎ ‎ 63‎ a ‎ ‎ 75‎ ‎60 ‎ ‎ 63‎ ‎72 ‎ ‎70‎ a﹣1 ‎ ‎ b ‎65 ‎ 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(  )‎ A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛 C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛 ‎【考点】命题的真假判断与应用.‎ ‎【专题】探究型;简易逻辑;推理和证明.‎ ‎【分析】根据已知中这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析四个答案的正误,可得结论.‎ ‎【解答】解:∵这10名学生中,进入立定跳远决赛的有8人,‎ 故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,‎ 又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,‎ 则3,6,7号同学必进入30秒跳绳决赛,‎ 剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a﹣1有且只有3人进入30秒跳绳决赛,‎ 故成绩为63的同学必进入30秒跳绳决赛,‎ 故选:B ‎【点评】本题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.‎ ‎ ‎ 二.填空题(共6小题)‎ ‎9.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为  .‎ ‎【考点】数量积表示两个向量的夹角.‎ ‎【专题】计算题;定义法;平面向量及应用.‎ ‎【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.‎ ‎【解答】解:∵向量=(1,),=(,1),‎ ‎∴与夹角θ满足:‎ cosθ===,‎ 又∵θ∈[0,π],‎ ‎∴θ=,‎ 故答案为:.‎ ‎【点评】本题考查的知识点是平面向量的夹角公式,熟练掌握平面向量的夹角公式,是解答的关键.‎ ‎ ‎ ‎10.(2016•北京)函数f(x)=(x≥2)的最大值为 2 .‎ ‎【考点】利用导数求闭区间上函数的最值.‎ ‎【专题】计算题;函数思想;综合法;函数的性质及应用.‎ ‎【分析】分离常数便可得到,根据反比例函数的单调性便可判断该函数在[2,+∞)上为减函数,从而x=2时f(x)取最大值,并可求出该最大值.‎ ‎【解答】解:;‎ ‎∴f(x)在[2,+∞)上单调递减;‎ ‎∴x=2时,f(x)取最大值2.‎ 故答案为:2.‎ ‎【点评】考查函数最大值的概念及求法,分离常数法的运用,以及反比例函数的单调性,根据函数单调性求最值的方法.‎ ‎ ‎ ‎11.(2016•北京)某四棱柱的三视图如图所示,则该四棱柱的体积为  .‎ ‎【考点】由三视图求面积、体积.‎ ‎【专题】计算题;空间位置关系与距离;立体几何.‎ ‎【分析】由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.‎ ‎【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,‎ 棱柱的底面面积S=×(1+2)×1=,‎ 棱柱的高为1,‎ 故棱柱的体积V=,‎ 故答案为:‎ ‎【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.‎ ‎ ‎ ‎12.(2016•北京)已知双曲线﹣=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a= 1 ,b= 2 .‎ ‎【考点】双曲线的标准方程.‎ ‎【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.‎ ‎【分析】由双曲的一条渐近线为2x+y=0,一个焦点为(,0),列出方程组,由此能出a,b.‎ ‎【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),‎ ‎∴,‎ 解得a=1,b=2.‎ 故答案为:1,2.‎ ‎【点评】本题考查双曲线中实数值的求法,是基础题,解题时要认真审题,注意双曲线的性质的合理运用.‎ ‎ ‎ ‎13.(2016•北京)在△ABC中,∠A=,a=c,则= 1 .‎ ‎【考点】正弦定理的应用.‎ ‎【专题】计算题;规律型;转化思想;解三角形.‎ ‎【分析】利用正弦定理求出C的大小,然后求出B,然后判断三角形的形状,求解比值即可.‎ ‎【解答】解:在△ABC中,∠A=,a=c,‎ 由正弦定理可得:,‎ ‎=,sinC=,C=,则B==.‎ 三角形是等腰三角形,B=C,则b=c,‎ 则=1.‎ 故答案为:1.‎ ‎【点评】本题考查正弦定理的应用,三角形的判断,考查计算能力.‎ ‎ ‎ ‎14.(2016•北京)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店 ‎①第一天售出但第二天未售出的商品有 16 种;‎ ‎②这三天售出的商品最少有 29 种.‎ ‎【考点】容斥原理;集合的包含关系判断及应用.‎ ‎【专题】计算题;转化思想;综合法;集合.‎ ‎【分析】①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数.‎ ‎【解答】解:①设第一天售出商品的种类集为A,第二天售出商品的种类集为B,第三天售出商品的种类集为C,‎ 如图,‎ 则第一天售出但第二天未售出的商品有16种;‎ ‎②由①知,前两天售出的商品种类为19+13﹣3=29种,‎ 当第三天售出的18种商品都是第一天或第二天售出的商品时,这三天售出的商品种类最少为29种.‎ 故答案为:①16;②29.‎ ‎【点评】本题考查集合的包含关系及其应用,考查了集合中元素的个数判断,考查学生的逻辑思维能力,是中档题.‎ ‎ ‎ 三.解答题(共6小题)‎ ‎15.(2016•北京)已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.‎ ‎(1)求{an}的通项公式;‎ ‎(2)设cn=an+bn,求数列{cn}的前n项和.‎ ‎【考点】等差数列与等比数列的综合.‎ ‎【专题】方程思想;分析法;等差数列与等比数列.‎ ‎【分析】(1)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;‎ ‎(2)求得cn=an+bn=2n﹣1+3n﹣1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.‎ ‎【解答】解:(1)设{an}是公差为d的等差数列,‎ ‎{bn}是公比为q的等比数列,‎ 由b2=3,b3=9,可得q==3,‎ bn=b2qn﹣2=3•3n﹣2=3n﹣1;‎ 即有a1=b1=1,a14=b4=27,‎ 则d==2,‎ 则an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;‎ ‎(2)cn=an+bn=2n﹣1+3n﹣1,‎ 则数列{cn}的前n项和为 ‎(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+‎ ‎=n2+.‎ ‎【点评】本题考查等差数列和等比数列的通项公式和求和公式的运用,同时考查数列的求和方法:分组求和,考查运算能力,属于基础题.‎ ‎ ‎ ‎16.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.‎ ‎(1)求ω的值;‎ ‎(2)求f(x)的单调递增区间.‎ ‎【考点】复合三角函数的单调性;三角函数的周期性及其求法.‎ ‎【专题】计算题;函数思想;数学模型法;三角函数的图像与性质.‎ ‎【分析】(1)利用倍角公式结合两角和的正弦化积,再由周期公式列式求得ω的值;‎ ‎(2)直接由相位在正弦函数的增区间内求解x的取值范围得f(x)的单调递增区间.‎ ‎【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx ‎=sin2ωx+cos2ωx==.‎ 由T=,得ω=1;‎ ‎(2)由(1)得,f(x)=.‎ 再由,得.‎ ‎∴f(x)的单调递增区间为[](k∈Z).‎ ‎【点评】本题考查y=Asin(ωx+φ)型函数的图象和性质,考查了两角和的正弦,属中档题.‎ ‎ ‎ ‎17.(2016•北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:‎ ‎(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?‎ ‎(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.‎ ‎【考点】频率分布直方图;随机抽样和样本估计总体的实际应用.‎ ‎【专题】计算题;转化思想;综合法;概率与统计.‎ ‎【分析】(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,由此能求出为使80%以上居民在该用的用水价为4元/立方米,w至少定为3立方米.‎ ‎(2)当w=3时,利用频率分布直方图能求出该市居民的人均水费.‎ ‎【解答】解:(1)由频率分布直方图得:‎ 用水量在[0.5,1)的频率为0.1,‎ 用水量在[1,1.5)的频率为0.15,‎ 用水量在[1.5,2)的频率为0.2,‎ 用水量在[2,2.5)的频率为0.25,‎ 用水量在[2.5,3)的频率为0.15,‎ 用水量在[3,3.5)的频率为0.05,‎ 用水量在[3.5,4)的频率为0.05,‎ 用水量在[4,4.5)的频率为0.05,‎ ‎∵用水量小于等于3立方米的频率为85%,‎ ‎∴为使80%以上居民在该用的用水价为4元/立方米,‎ ‎∴w至少定为3立方米.‎ ‎(2)当w=3时,该市居民的人均水费为:‎ ‎(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,‎ ‎∴当w=3时,估计该市居民该月的人均水费为10.5元.‎ ‎【点评】本题考查频率分布直方图的应用,考查当w=3时,该市居民该月的人均水费的估计的求法,是中档题,解题时要认真审题,注意频率分布直方图的合理运用.‎ ‎ ‎ ‎18.(2016•北京)如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.‎ ‎(1)求证:DC⊥平面PAC;‎ ‎(2)求证:平面PAB⊥平面PAC;‎ ‎(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.‎ ‎【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.‎ ‎【专题】综合题;转化思想;综合法;立体几何.‎ ‎【分析】(1)利用线面垂直的判定定理证明DC⊥平面PAC;‎ ‎(2)利用线面垂直的判定定理证明AB⊥平面PAC,即可证明平面PAB⊥平面PAC;‎ ‎(3)在棱PB上存在中点F,使得PA∥平面CEF.利用线面平行的判定定理证明.‎ ‎【解答】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,‎ ‎∴PC⊥DC,‎ ‎∵DC⊥AC,PC∩AC=C,‎ ‎∴DC⊥平面PAC;‎ ‎(2)证明:∵AB∥DC,DC⊥AC,‎ ‎∴AB⊥AC,‎ ‎∵PC⊥平面ABCD,AB⊂平面ABCD,‎ ‎∴PC⊥AB,‎ ‎∵PC∩AC=C,‎ ‎∴AB⊥平面PAC,‎ ‎∵AB⊂平面PAB,‎ ‎∴平面PAB⊥平面PAC;‎ ‎(3)解:在棱PB上存在中点F,使得PA∥平面CEF.‎ ‎∵点E为AB的中点,‎ ‎∴EF∥PA,‎ ‎∵PA⊄平面CEF,EF⊂平面CEF,‎ ‎∴PA∥平面CEF.‎ ‎【点评】本题考查线面平行与垂直的证明,考查平面与平面垂直的证明,考查学生分析解决问题的能力,属于中档题.‎ ‎ ‎ ‎19.(2016•北京)已知椭圆C:+=1过点A(2,0),B(0,1)两点.‎ ‎(1)求椭圆C的方程及离心率;‎ ‎(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.‎ ‎【考点】椭圆的标准方程;直线与椭圆的位置关系.‎ ‎【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.‎ ‎【分析】(1)由题意可得a=2,b=1,则,则椭圆C的方程可求,离心率为e=;‎ ‎(2)设P(x0,y0),求出PA、PB所在直线方程,得到M,N的坐标,求得|AN|,|BM|.由,结合P在椭圆上求得四边形ABNM的面积为定值2.‎ ‎【解答】(1)解:∵椭圆C:+=1过点A(2,0),B(0,1)两点,‎ ‎∴a=2,b=1,则,‎ ‎∴椭圆C的方程为,离心率为e=;‎ ‎(2)证明:如图,‎ 设P(x0,y0),则,PA所在直线方程为y=,‎ 取x=0,得;‎ ‎,PB所在直线方程为,‎ 取y=0,得.‎ ‎∴|AN|=,‎ ‎|BM|=1﹣.‎ ‎∴=‎ ‎=﹣==‎ ‎=.‎ ‎∴四边形ABNM的面积为定值2.‎ ‎【点评】本题考查椭圆的标准方程,考查了椭圆的简单性质,考查计算能力与推理论证能力,是中档题.‎ ‎ ‎ ‎20.(2016•北京)设函数f(x)=x3+ax2+bx+c.‎ ‎(1)求曲线y=f(x)在点(0,f(0))处的切线方程;‎ ‎(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;‎ ‎(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.‎ ‎【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理.‎ ‎【专题】方程思想;分析法;函数的性质及应用;导数的概念及应用.‎ ‎【分析】(1)求出f(x)的导数,求得切线的斜率和切点,进而得到所求切线的方程;‎ ‎(2)由f(x)=0,可得﹣c=x3+4x2+4x,由g(x)=x3+4x2+4x,求得导数,单调区间和极值,由﹣c介于极值之间,解不等式即可得到所求范围;‎ ‎(3)先证若f(x)有三个不同零点,令f(x)=0,可得单调区间有3个,求出导数,由导数的图象与x轴有两个不同的交点,运用判别式大于0,可得a2﹣3b>0;再由a=b=4,c=0,可得若a2﹣3b>0,不能推出f(x)有3个零点.‎ ‎【解答】解:(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b,‎ 可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b,‎ 切点为(0,c),可得切线的方程为y=bx+c;‎ ‎(2)设a=b=4,即有f(x)=x3+4x2+4x+c,‎ 由f(x)=0,可得﹣c=x3+4x2+4x,‎ 由g(x)=x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2),‎ 当x>﹣或x<﹣2时,g′(x)>0,g(x)递增;‎ 当﹣2<x<﹣时,g′(x)<0,g(x)递减.‎ 即有g(x)在x=﹣2处取得极大值,且为0;‎ g(x)在x=﹣处取得极小值,且为﹣.‎ 由函数f(x)有三个不同零点,可得﹣<﹣c<0,‎ 解得0<c<,‎ 则c的取值范围是(0,);‎ ‎(3)证明:若f(x)有三个不同零点,令f(x)=0,‎ 可得f(x)的图象与x轴有三个不同的交点.‎ 即有f(x)有3个单调区间,‎ 即为导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,‎ 可得△>0,即4a2﹣12b>0,即为a2﹣3b>0;‎ 若a2﹣3b>0,即有导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,‎ 当c=0,a=b=4时,满足a2﹣3b>0,‎ 即有f(x)=x(x+2)2,图象与x轴交于(0,0),(﹣2,0),则f(x)的零点为2个.‎ 故a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.‎ ‎【点评】不同考查导数的运用:求切线的方程和单调区间、极值,考查函数的零点的判断,注意运用导数求得极值,考查化简整理的圆能力,属于中档题.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档