- 2021-04-13 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
北京市中考数学一模分类25题操作性问题
2018年北京市中考数学一模分类——25题操作性问题 东25. 如图,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD 上任取一点P,连接PB ,PE.若BC =4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y. 小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整: x 0 1 2 3 4 5 6 y 5.2 4.2 4.6 5.9 7.6 9.5 (1)通过取点、画图、计算,得到了x与y的几组值,如下表: (说明:补全表格时,相关数值保留一位小数). (参考数据: ,,) (2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象; (3)函数y的最小值为______________(保留一位小数),此时点P在图1中的位置为 ________________________. 西25.如图,P为⊙O的直径AB上的一个动点,点C在上,连接PC,过点A作PC的 垂线交⊙O于点Q.已知AB=5cm,AC=3cm,设A,P两点间的距离为x cm,A,Q 两点间的距离为y cm. 某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究. 下面是该同学的探究过程,请补充完整: (1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表: x(cm) 0 1 2.5 3. 3.5 4 5 y(cm) 4.0 4.7 5.0 4.8 . 4.1 3.7 (说明:补全表格时的相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数 的图象; (3)结合画出的函数图象,解决问题:当AQ=2AP时,AP的长度约为 cm. 海25.在研究反比例函数的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量的取值范围是全体非零实数,因此函数图象会被轴分成两部分;其次,分析解析式,得到随的变化趋势:当时,随着值的增大,的值减小,且逐渐接近于零,随着值的减小,的值会越来越大,由此,可以大致画出在时的部分图象,如图1所示: 利用同样的方法,我们可以研究函数的图象与性质. 通过分析解析式画出部分函数图象如图2所示. (1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点;(画出网格区域内的部分即可) (2)观察图象,写出该函数的一条性质:____________________; (3)若关于的方程有两个不相等的实数根,结合图象,直接写出实数的取值范围:___________________________. 朝25.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=cm,DE=cm(当的值为0或3时,的值为2),探究函数y随自变量x的变化而变化的 规律. (1)通过取点、画图、测量,得到了x与y的几组对应值,如下表: x/cm 0 0.40 0.55 1.00 1.80 2.29 2.61 3 y/cm 2 3. 68 3.84 3.65 3.13 2.70 2 (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的 图象; (3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为 cm(结果保留一位小数). 丰25.如图,Rt△ABC中,∠ACB = 90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E.已知∠A = 30°,AB = 4cm,在点D由点A到点B运动的过程中,设AD = xcm,AE = ycm. 小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整: (1)通过取点、画图、测量,得到了x与y的几组值,如下表: x/cm … 1 2 3 … y/cm … 0.4 0.8 1.0 1.0 0 4.0 … (说明:补全表格时相关数值保留一位小数) (2)在下面的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象; (3)结合画出的函数图象,解决问题:当AE =AD时,AD的长度约为 cm. 石25.如图,半圆的直径,点在上且,点是半圆上的 动点,过点作交(或的延长线)于点.设,.(当点与点或点重合时,的值为) 小石根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整: (1)通过取点、画图、测量,得到了与的几组值,如下表: 1 1.5 2 2.5 3 3.5 4 0 3.7 3.8 3.3 2.5 (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数 的图象; (3)结合画出的函数图象,解决问题: 当与直径所夹的锐角为时,的长度约为 . 门25.在正方形ABCD中, AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB, 设、两点间的距离为,长度为. 小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整: (1)通过取点、画图、测量,得到了与的几组值,如下表: 6.0 7.4 (说明:补全表格时相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象. (3)结合画出的函数图象,解决问题:的长度最小值约为__________. 顺25.如图,P是半圆弧上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间的距离为x cm,B,C两点间的距离为y cm. 小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究. 下面是小东的探究过程,请补充完整: (1)通过取点、画图、测量,得到了x与y的几组值,如下表: x/cm 0 0.5 1 1.5 2 2.5 3 y/cm 3 3.1 3.5 4.0 5.3 6 (说明:补全表格时相关数据保留一位小数) (2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象; (3)结合画出的函数图象,解决问题:直接写出△OBC周长C的 取值范围是 . 通 怀25、如图,在等边△ABC中, BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为x cm,CE为y cm. 小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整: (1)通过取点、画图、测量,得到了与的几组值,如下表: x/cm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y/cm 5.0 3.3 2.0 0.4 0 0.3 0.4 0.3 0.2 0 (说明:补全表格上相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象; (3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为________. 房25. 如图,Rt△ABC,∠C=90°,CA=CB=4cm,点P为AB边上的一个动点,点E是CA边的中点, 连接PE,设A,P两点间的距离为xcm,P,E两点间的距离为y cm. 小安根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究. 下面是小安的探究过程,请补充完整: (1)通过取点、画图、测量,得到了与的几组值,如下表: x/cm 0 1 2 3 4 5 6 7 8 y/cm 2.8 2.2 2.0 2.2 2.8 3.6 5.4 6.3 (说明:补全表格时相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象; (3)结合画出的函数图象,解决问题: ①写出该函数的一条性质: ; ②当时,的长度约为 cm. 大25.如图,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一动点,连接AP,设P,C两点间的距离为cm,P,A两点间的距离为cm.(当点P与点C重合时,的值为0) 小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整: (1)通过取点、画图、测量,得到了与的几组值,如下表: x/cm 0 0.43 1.00 1.50 1.85 2.50 3.60 4.00 4.30 5.00 5.50 6.00 6.62 7.50 8.00 8.83 y/cm 7.65 7.28 6.80 6.39 6.11 5.62 4.87 4.47 4.15 3.99 3.87 3.82 3.92 4.06 4.41 (说明:补全表格时相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出 该函数的图象; (3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度 约为 cm.(结果保留一位小数) 平25.如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米. 小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究. 下面是小新的探究过程,请补充完整: (1)通过取点、画图、测量,得到了x与y的几组值,如下表: x(s) 0 1 2 3 4 5 6 7 y(cm) 0 1.0 2.0 3.0 2.7 2.7 m 3.6 经测量m的值是 (保留一位小数). (2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象; (3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置. 延25.如图,点P是以O为圆心,AB为直径的半圆 上的动点,AB=6cm,设弦AP的长为cm, △APO的面积为cm2,(当点P与点A或 点B重合时,y的值为0). 小明根据学习函数的经验,对函数y随 自变量x的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整; (1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表: x/cm 0.5 1 2 3 3.5 4 5 5.5 5.8 y/cm2 0.8 1.5 2.8 3.9 4.2 m 4.2 3.3 2.3 那么m= ;(保留一位小数) (2)建立平面直角坐标系,描出 以表中各组对应值为坐标的点, 画出该函数图象. (3)结合函数图象说明,当△APO的面积是4时,则AP的值约为 . (保留一位小数)查看更多