高中数学选修4-4坐标系与参数方程-高考真题演练

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高中数学选修4-4坐标系与参数方程-高考真题演练

高中数学选修4-4坐标系与参数方程------高考真题演练 ‎1(1)(2018全国卷III) 在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.‎ ‎(1)求的取值范围;‎ ‎(2)求中点的轨迹的参数方程.‎ ‎1(2)(2018全国卷II)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).‎ ‎(1)求和的直角坐标方程;‎ ‎(2)若曲线截直线所得线段的中点坐标为,求的斜率.‎ ‎1(3)(2018全国卷I)在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为    ‎ ‎(1)求的直角坐标方程 ‎ ‎(2)若与有且仅有三个公共点,求的方程 ‎ ‎1(1)(2018全国卷III) 在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.‎ ‎(1)求的取值范围;‎ ‎(2)求中点的轨迹的参数方程.‎ 解:(1)的参数方程为,∴的普通方程为,当时,直线:与有两个交点,当时,设直线的方程为,由直线与有两个交点有,得,∴或,∴或,综上.‎ ‎(2)点坐标为,当时,点坐标为,当时,设直线的方程为,,∴有,整理得,∴,,∴ 得代入④得.当点时满足方程,∴中点的的轨迹方程是,即,由图可知,,,则,故点的参数方程为(为参数,).‎ ‎1(2)(2018全国卷II)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).‎ ‎(1)求和的直角坐标方程;‎ ‎(2)若曲线截直线所得线段的中点坐标为,求的斜率.‎ 解:(1)曲线的直角坐标方程为.‎ 当时,的直角坐标方程为,‎ 当时,的直角坐标方程为.‎ ‎(2)将的参数方程代入的直角坐标方程,整理得关于的方程 ‎.①‎ 因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.‎ ‎1(3)(2018全国卷I)在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为    ‎ ‎(1)求的直角坐标方程 ‎ ‎(2)若与有且仅有三个公共点,求的方程 ‎ ‎1.‎ 则,即 所以的直角坐标方程为 2.由题可知圆心坐标为,半径 又曲线方程,关于轴对称,且曲线过圆外定点 ‎∴当曲线与圆有且仅有个交点时,设曲线在轴的右半部分与圆相切于点,‎ 此时,‎ 则,‎ ‎,即直线的方程为 ‎1(3)(2017全国卷3) [选修4-4:坐标系与参数方程](10分)‎ 在直角坐标系xOy中,直线的参数方程为(t为参数),直线的参数方程为(m为参数),设与的交点为P,当k变化时,P的轨迹为曲线C.‎ ‎(1)写出C的普通方程:‎ ‎(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设,M为与C的交点,求M的极径.‎ ‎【解析】⑴将参数方程转化为一般方程 ‎ ……①‎ ‎ ……②‎ ①②消可得:‎ 即的轨迹方程为;‎ ⑵将参数方程转化为一般方程 ‎ ……③‎ 联立曲线和 解得 由解得 即的极半径是.‎
查看更多

相关文章

您可能关注的文档