- 2021-04-13 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学选修4-4坐标系与参数方程-高考真题演练
高中数学选修4-4坐标系与参数方程------高考真题演练 1(1)(2018全国卷III) 在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点. (1)求的取值范围; (2)求中点的轨迹的参数方程. 1(2)(2018全国卷II)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 1(3)(2018全国卷I)在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 (1)求的直角坐标方程 (2)若与有且仅有三个公共点,求的方程 1(1)(2018全国卷III) 在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点. (1)求的取值范围; (2)求中点的轨迹的参数方程. 解:(1)的参数方程为,∴的普通方程为,当时,直线:与有两个交点,当时,设直线的方程为,由直线与有两个交点有,得,∴或,∴或,综上. (2)点坐标为,当时,点坐标为,当时,设直线的方程为,,∴有,整理得,∴,,∴ 得代入④得.当点时满足方程,∴中点的的轨迹方程是,即,由图可知,,,则,故点的参数方程为(为参数,). 1(2)(2018全国卷II)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 解:(1)曲线的直角坐标方程为. 当时,的直角坐标方程为, 当时,的直角坐标方程为. (2)将的参数方程代入的直角坐标方程,整理得关于的方程 .① 因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率. 1(3)(2018全国卷I)在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 (1)求的直角坐标方程 (2)若与有且仅有三个公共点,求的方程 1. 则,即 所以的直角坐标方程为 2.由题可知圆心坐标为,半径 又曲线方程,关于轴对称,且曲线过圆外定点 ∴当曲线与圆有且仅有个交点时,设曲线在轴的右半部分与圆相切于点, 此时, 则, ,即直线的方程为 1(3)(2017全国卷3) [选修4-4:坐标系与参数方程](10分) 在直角坐标系xOy中,直线的参数方程为(t为参数),直线的参数方程为(m为参数),设与的交点为P,当k变化时,P的轨迹为曲线C. (1)写出C的普通方程: (2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设,M为与C的交点,求M的极径. 【解析】⑴将参数方程转化为一般方程 ……① ……② ①②消可得: 即的轨迹方程为; ⑵将参数方程转化为一般方程 ……③ 联立曲线和 解得 由解得 即的极半径是.查看更多