- 2021-04-12 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020年高考真题+高考模拟题 专项版解析汇编 理科数学——10 计数原理(教师版)
专题10 计数原理 1.【2020年高考全国Ⅰ卷理数】的展开式中x3y3的系数为 A.5 B.10 C.15 D.20 【答案】C 【解析】展开式的通项公式为(且) 所以的各项与展开式的通项的乘积可表示为: 和 在中,令,可得:,该项中的系数为, 在中,令,可得:,该项中的系数为 所以的系数为 故选:C. 【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题. 2.【2020年新高考全国Ⅰ卷】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A.120种 B.90种 C.60种 D.30种 【答案】C 【解析】首先从名同学中选名去甲场馆,方法数有; 然后从其余名同学中选名去乙场馆,方法数有; 最后剩下的名同学去丙场馆. 故不同的安排方法共有种. 故选:C. 【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题. 3.【2020年高考北京】在的展开式中,的系数为 A. B.5 C. D.10 【答案】C 【解析】展开式的通项公式为:, 令可得:,则的系数为:. 故选:C. 【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 4.【2020年高考全国II卷理数】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】 【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学, 先取2名同学看作一组,选法有:. 现在可看成是3组同学分配到3个小区,分法有:, 根据分步乘法原理,可得不同的安排方法种, 故答案为:. 【点睛】本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题. 5.【2020年高考全国III卷理数】的展开式中常数项是__________ (用数字作答). 【答案】 【解析】 其二项式展开通项: 当,解得 的展开式中常数项是:. 故答案为:. 【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握的展开通项公式,考查了分析能力和计算能力,属于基础题. 6.【2020年高考天津】在的展开式中,的系数是_________. 【答案】10 【解析】因为的展开式的通项公式为,令,解得. 所以的系数为. 故答案为:. 【点睛】本题主要考查二项展开式的通项公式的应用,属于基础题. 7.【2020年高考浙江】二项展开式,则_______,________. 【答案】80;122 【解析】的通项为,令,则,故;. 故答案为:80;122. 【点晴】本题主要考查利用二项式定理求指定项的系数问题,考查学生的数学运算能力,是一道基础题. 1.【2020·全国高三其他(理)】若的展开式中的系数是80,则实数a的值为 A.-2 B. C. D.2 【答案】D 【解析】的展开式中含的项为,由题意得, 所以.选D. 2.【2020·黑龙江省大庆实验中学高三月考(理)】二项式的展开式中的系数为 A. B. C. D. 【答案】A 【解析】通项为 令,则, 故选:A 【点睛】本题主要考查了求指定项的系数,属于基础题. 3.【2020·山东省高三一模】某校周五的课程表设计中,要求安排8节课(上午4节、下午4节),分别安排语文数学、英语、物理、化学、生物、政治、 历史各一节,其中生物只能安排在第一节或最后一节,数学和英语在安排时必须相邻(注:上午的最后一节与下午的第一节不记作相邻),则周五的课程顺序的编排方法共有 A.4800种 B.2400种 C.1200种 D.240种 【答案】B 【解析】分步排列,第一步:因为由题意知生物只能出现在第一节或最后一节, 所以从第一个位置和最后一个位置选一个位置把生物安排, 有种编排方法;第二步因为数学和英语在安排时必须相邻, 注意数学和英语之间还有一个排列有种编排方法; 第三步:剩下的5节课安排5科课程,有种编排方法. 根据分步计数原理知共有种编排方法. 故选:B. 【点睛】本题考查排列和分步乘法原理的应用,限制条件优先考虑,属于中档题. 4.【2020·辽宁省高三三模(理)】在展开式中,含的项的系数是 A. B. C.15 D.51 【答案】A 【解析】因为 所以含的项的系数为. 故选:A. 5.【2020·天津耀华中学高三二模】在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有 A.512个 B.192个 C.240个 D.108个 【答案】D 【解析】由于能被5整除的数,其个位必为0或5,由此分两类:第一类:个位为0的,有个;第二类:个位为5的,再分两小类:第1小类:不含0的,有 个,第2小类:含0的,有个,从而第二类共有48个;故在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的个数有60+48=108个,故选D. 6.【2020·宁夏回族自治区银川一中高三三模(理)】为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有 A.24 B.36 C.48 D.64 【答案】B 【解析】当按照进行分配时,则有种不同的方案; 当按照进行分配,则有种不同的方案. 故共有36种不同的派遣方案, 故选:B. 【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题. 7.【2020·河北省河北正中实验中学高三其他(理)】“仁义礼智信”为儒家“五常”由孔子提出“仁、义、礼”,孟子延伸为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”.将“仁义礼智信”排成一排,“仁”排在第一-位,且“智信”相邻的概率为 A. B. C. D. 【答案】A 【解析】“仁义礼智信”排成一排,任意排有种排法,其中“仁”排在第一位,且“智信”相邻的排法有种排法,故概率 故选:A 【点睛】本题考查排列问题及古典概型,特殊元素优先考虑,捆绑插空是常见方法,是基础题. 8.【2020·湖南省长沙一中高三月考(理)】已知(1+ax)·(1+x)5的展开式中x2 的系数为5,则a= A.-4 B.-3 C.-2 D.-1 【答案】D 【解析】由题意知:,解得,故选D. 【点睛】本小题主要考查二项展开式,二项式定理在高考中主要以小题的形式考查,属容易题,熟练基础知识是解答好本类题目的关键. 9.【2020·福建省连城县第一中学高三一模(理)】第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是 A. B. C. D. 【答案】A 【解析】五人分成四组,先选出两人组成一组,剩下的人各自成一组, 所有可能的分组共有种, 甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关, 故甲和乙恰好在同一组的概率是. 故选:A. 10.【2020·福建省高三月考(理)】已知的展开式中第9项是常数项,则展开式中的系数为___________;展开式中系数的绝对值最大的项的系数为___________. 【答案】 【解析】因为,所以当时, ,则; 令,得,所以的系数为. 设的系数的绝对值最大,则,解得,因为,,所以,故系数的绝对值最大的项的系数为. 故答案为:(1) (2) 【点睛】本题主要考查了二项式定理的应用,二项式展开式的通项公式,求展开式中的某项的系数与系数绝对值最大项等问题,考查了学生的运算求解能力. 11.【2020·浙江省高三其他】有标号分别为1,2,3,4,5,6的6张抗疫宣传海报,要求排成2行3列,则共有_______种不同的排法,如果再要求每列中前面一张的标号比其后面一张的标号小,则共有_______种不同的排法. 【答案】720 90 【解析】先从标号分别为1,2,3,4,5,6的6张抗疫宣传海报,选出3张排在第一行,剩余3张排在第二行, 则共有种不同的排法, 如果再要求每列中前面一张的标号比其后面一张的标号小时, 当第一行是:1,2,3时,第二行是4,5,6,则有种不同的排法, 当第一行是:1,2,4时,第二行是3,5,6,则有种不同的排法, 当第一行是:1,2,5时,第二行是3,4,6,则有种不同的排法, 当第一行是:1,3,4时,第二行是2,5,6,则有种不同的排法, 当第一行是:1,3,5时,第二行是2,4,6,则有种不同的排法, 所以每列中前面一张的标号比其后面一张的标号小时,共有:种不同的排法, 故答案为:①720;②90 【点睛】本题主要考查排列组合应用题以及分类计数原理,还考查了分类讨论的思想和分析求解问题的能力,属于中档题. 12.【2020·天津耀华中学高三二模】的展开式中x7的系数为__________.(用数字作答) 【答案】 【解析】展开式通项为,令,得, 所以展开式中的系数为.故答案为. 【点睛】①求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r);第二步是根据所求的指数,再求所要求的项. ②有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解. 13.【2020·山西省太原五中高三其他(理)】二项式的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则的值为________. 【答案】8 【解析】展开式中只有第6项的二项式系数最大,故, 的展开式的通项为:. 故,化简得到. 故答案为:. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力. 14.【2020·广东省湛江二十一中高三月考(理)】 为了积极稳妥疫情期间的复学工作,市教育局抽调5名机关工作人员去某街道3所不同的学校开展驻点服务,每个学校至少去1人,若甲、乙两人不能去同一所学校,则不同的分配方法种数为___________. 【答案】114 【解析】分四种情况: (1)安排甲去一所学校共有种方法, 安排乙到第二所学校共有种方法, 余下三人去第三所学校共有种方法,共有种方法. (2)安排甲去一所学校共有种方法, 安排乙到第二所学校共有种方法, 余下的三人中两人一起去第三所学校有种方法, 另一个人去前两所学校中任意一所共有种方法, 共有种方法. (3)安排甲去一所学校共有种方法, 安排乙到第二所学校共有种方法, 余下的三人中一人去第三所学校有种方法, 另外两人一起去前两所学校中任意一所共有种方法, 共有种方法. (4)安排甲去一所学校共有种方法, 安排乙到第二所学校共有种方法, 余下的三人中一人去第三所学校有种方法, 另外两人分别去前两所学校中任意一所共有种方法, 共有种方法. 综上共有种方法. 故答案为: 【点睛】本题主要考查排列组合的综合应用,考查了学生的分类讨论的思想,属于中档题. 15.【2020·黑龙江省哈尔滨三中高三其他(理)】2020年初,我国突发新冠肺炎疫情.面对突发灾难,举国上下一心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学生志愿者团队开展“爱心辅导”活动,为抗疫前线工作者子女在线辅导功课.现安排甲、乙、丙三名志愿者为某学生辅导数学、物理、化学、生物四门学科,每名志愿者至少辅导一门学科,每门学科由一名志愿者辅导,共有______种辅导方案. 【答案】36 【解析】根据题意,要求甲、乙、丙名志愿者每名志愿者至少辅导一门学科, 每门学科由名志愿者辅导,则必有人辅导门学科. 则有. 故答案为:36. 【点睛】本题考查了排列组合的应用,掌握排列组合公式的计算,属于基础题. 16.【2020·山东省邹城市第一中学高三其他】“学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP,该款软件主要设有“阅读文章”“视听学习”两个学习板块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题板块,某人在学习过程中,“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有______种. 【答案】432 【解析】根据题意学习方法有二类: 一类是:在“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块, 这样的学习方法数为:; 另一类是:在“阅读文章”与“视听学习”两大学习板块之间不间隔一个答题板块, 这样的学习方法数为:, 因此某人在学习过程中,“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法数为:. 故答案为:432. 【点睛】本题考查了分类计算原理的应用,考查了排列数与组合数的计算,考查了数学运算能力和数学阅读能力. 17.【2020·四川省绵阳南山中学高三一模(理)】的展开式的第五项为,则展开式的第六项的二项式系数为_________. 【答案】56 【解析】:的展开式的通项为, 因为的展开式的第五项为, 所以且,解得, 所以展开式的第六项的二项式系数为 故答案为:56 【点睛】此题考查的是求二项式展开式的二项式系数,属于基础题. 18.【2020·上海高三二模】设,若,则______. 【答案】160 【解析】原式, 令,即得:, 所以. 所以展开式中含项为:. 故. 故答案为:160. 【点睛】本题考查二项式定理的应用,以及利用通项法研究特定项的问题,属于基础题. 19.【2020·山西省高三月考(理)】某地区为了组建援鄂抗疫医疗队,现从4名医生,5名护士中选3名医护人员组成一个团队,要求医生、护士都有,则不同的组队方案种数是__________. 【答案】 【解析】从4名医生,5名护士中选3名医护人员组成一个团队,要求医生、护士都有,可分为两类: 第一类:1名医生2名护士,共有种不同的选法; 第二类:2名医生1名护士,共有种不同的选法, 由分类计数原理可得,共有种不同的选法. 故答案为:. 【点睛】本题主要考查分类计算原理和排列组合的应用,其中解答中根据题意合理分类,结合分类计算原理求解是解答的关键,着重考查了分类讨论思想,以及运算与求解能力. 20.【2020·福建省福州第一中学高三开学考试(理)】若随机变量,且,则展开式中项的系数是__________. 【答案】1620 【解析】随机变量,均值是2,且,∴; ∴; 又展开式的通项公式为, 令,解得,不合题意,舍去;令,解得,对应的系数为;令,解得,不合题意,舍去;∴展开式中 项的系数是,故答案为1620. 【点睛】本题考查了正态分布曲线的特点及其几何意义,也考查二项式系数的性质与应用问题,是基础题;根据正态分布的概率性质求出的值,再化;利用(展开式的通项公式求出含的系数,即可求出对应项的系数.查看更多