- 2021-05-25 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学理科真题
2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A.0 B. C. D. 2.已知集合,则( ) A. B. C. D. 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则a5=( ) A. B. C. D.12 5.设函数.若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6.在中,为边上的中线,为的中点,则( ) A. B. C. D. 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( ) A. B. C. D.2 8.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则( ) A.5 B.6 C.7 D.8 9.已知函数,,若存在2个零点,则的取值范围是( ) A. B. C. D. 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则( ) A. B. C. D. 11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则( ) A. B.3 C. D.4 12.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( ) A. B. C. D. 二、填空题(本题共4小题,每小题5分,共20分) 13.若满足约束条件,则的最大值为________. 14.记为数列的前项和.若,则________. 15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案) 16.已知函数,则的最小值是________. 三、解答题(共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。) (一)必考题:共60分。 17.(12分) 在平面四边形中,,,,. ⑴求; ⑵若,求. 18.(12分) 如图,四边形为正方形,,分别为,的中点,以为折痕把折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵求与平面所成角的正弦值. 19.(12分) 设椭圆的右焦点为,过的直线与交于,两点,点的坐标为. ⑴当与轴垂直时,求直线的方程; ⑵设为坐标原点,证明:. 20.(12分) 某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立. ⑴记20件产品中恰有2件不合格品的概率为,求的最大值点; ⑵现对一箱产品检验了20件,结果恰有2件不合格品,以⑴中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 21.(12分) 已知函数. ⑴讨论的单调性; ⑵若存在两个极值点,,证明:. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22.[选修4—4:坐标系与参数方程](10分) 在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. ⑴求的直角坐标方程; ⑵若与有且仅有三个公共点,求的方程. 23.[选修4—5:不等式选讲](10分) 已知. ⑴当时,求不等式的解集; ⑵若时不等式成立,求的取值范围.查看更多