- 2021-05-24 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数方程与不等式测试题
方程与不等式 (时间:45分钟 满分:100分) 一、选择题(每小题3分,共24分) 1.(滚动考查相反数的概念)|-3|的相反数是( ) A.3 B.-3 C.±3 D. 2.一元二次方程x2-x+=0的根为( ) A.x1=,x2=- B.x1=x2=- C.x1=2,x2=-2 D.x1=x2= 3.(滚动考查整式的运算)下列各运算中,正确的是( ) A.3a+2a=5a2 B.(-3a3)2=9a6 C.a6÷a2=a3 D.(a+2)2=a2+4 4.分式方程-=0的根是( ) A.x=1 B.x=-1 C.x=2 D.x=-2 5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( ) A.-1<m<3 B.m>3 C.m<-1 D.m>-1 6.某种商品的进价为800元,标价为1 200元,由于该商品积压,商店准备打折销售,但要保证利润率为20%,则可打( ) A.9折 B.8折 C.7折 D.6折 7.若不等式组有实数解,则实数m的取值范围是( ) A.m≤ B.m< C.m> D.m≥ 8.邱老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( ) A.19元 B.18元 C.16元 D.15元 二、填空题(每小题4分,共16分) 9.(滚动考查绝对值和二次根式的性质)若a,b为实数,且|a+1|+=0,则(ab)2 015的值是 . 10.关于x的方程2x+a-9=0的解是x=2,则a的值为 . 11.已知关于x、y的方程组的解满足不等式x+y<3,则a的取值范围为 . 12.(2014·兰州)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为 . 三、解答题(共60分) 13.(6分)(滚动考查实数的运算)计算:(sin30°)-2+()0-|3-|+83×(-0.125)3. 14.(12分)解方程(组): (1) (2)+1=; (3)x2+4x-2=0. 15.(6分)解不等式组: 并写出它的所有的整数解. 16.(8分)(兼顾考查分式的运算和一元二次方程的解法)先化简,再求值:÷(a-1-),其中a是方程x2-x=6的根. 17.(8分)(兼顾考查实数的运算和不等式的解法)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2×(2-5)+1 =2×(-3)+1 =-6+1 =-5. (1)求(-2)⊕3的值; (2)若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来. 18.(10分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人? 19.(10分)为了进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙、丙三种树每棵的价格之比是2∶2∶3,甲种树每棵200元,现计划用210 000元,购买这三种树共1 000棵. (1)求乙、丙两种树每棵各多少元? (2)若购买甲种树的棵数是乙种树的2倍,且恰好用完计划资金,求三种树各购买多少棵? (3)若又增加了10 120元的购树款,在购买总棵数不变的情况下,求丙种树最多可以购买多少棵? 参考答案 1.B 2.D 3.B 4.D 5.A 6.B 7.A 8.C 9.-1 10.5 11.a<1 12.(22-x)(17-x)=300 13.原式=()-2+1-(3-3)+[8×(-)]3 =4+1-3+3-1 =7-3. 14.(1)由①+②得x=1, 把x=1代入①得y=1. ∴方程组的解为 (2)5+x-2=1-x, x=-1. 经检验,x=-1是原方程的解. (3)(x+2)2=6. x1=-2+,x2=-2-. 15.由①得x≥1. 由②得x<4. ∴原不等式组的解集是1≤x<4, ∴原不等式组的所有的整数解是1、2、3. 16.原式=÷ =÷ =· =. ∵a是方程x2-x=6的根, ∴a2-a=6,∴原式=. 17.(1)(-2)⊕3=-2×(-2-3)+1=11. (2)∵3⊕x<13, ∴3(3-x)+1<13. ∴x>-1. 在数轴上表示如图所示. 18.设九年级学生有x人,根据题意,得 ×0.8=.解得x=352. 经检验x=352是原方程的解,且符合题意. 答:这个学校九年级学生有352人. 19.(1)∵甲、乙、丙三种树每棵的价格之比是2∶2∶3,甲种树每棵200元, ∴乙种树每棵的价格200元, 丙种树每棵的价格200×=300(元). (2)设购买乙种树x棵,则购买甲种树2x棵,购买丙种树(1 000-3x)棵,依题意得 200×2x+200×x+300(1 000-3x)=210 000. 解得x=300. ∴购买甲种树600棵,购买乙种树300棵,购买丙种树100棵. (3)设若购买丙种树y棵,则购买甲、乙两种树共(1 000-y)棵,依题意得 200(1 000-y)+300y≤210 000+10 120. 解得y≤201.2. ∵y为正整数, ∴y=201. ∴丙种树最多可以购买201棵.查看更多