【数学】2021届一轮复习人教版(文理通用)第7章第5讲直线、平面垂直的判定与性质作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2021届一轮复习人教版(文理通用)第7章第5讲直线、平面垂直的判定与性质作业

对应学生用书[练案50理][练案48文]‎ 第五讲 直线、平面垂直的判定与性质 A组基础巩固 一、选择题 ‎1.(2019·青岛质检)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是( C )‎ A.a⊥α,b∥β,α⊥β  B.a⊥α,b⊥β,α∥β C.a⊂α,b⊥β,α∥β  D.a⊂α,b∥β,α⊥β ‎[解析] 对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b.故选C.‎ ‎2.(2020·湖北省黄冈市质检)若l,m为两条不同的直线,α为平面,且l⊥α,则“m∥α”是“l⊥m”的( A )‎ A.充分不必要条件  B.必要不充分条件 C.充要条件  D.既不充分也不必要条件 ‎[解析] 由l⊥α,m∥α,∴l⊥m反之不成立,可能m⊂α.‎ ‎3.(文)在如图所示的四个正方体中,能得出AB⊥CD的是( A )‎ ‎(理)(2019·福建泉州质检)如图,在下列四个正方体ABCD-A1B‎1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( D )‎ ‎[解析] (理)如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,易知E,F,G,M,N,Q六个点共面,直线BD1与平面EFMNQG垂直,并且选项A、B、C中的平面与这个平面重合,不满足题意,只有选项D中的直线BD1与平面EFG不垂直,满足题意.故选D.‎ ‎4.(2019·天津模拟)设l是直线,α,β是两个不同的平面,则下列说法正确的是( B )‎ A.若l∥α,l∥β,则α∥β B.若l∥α,l⊥β,则α⊥β C.若α⊥β,l⊥α,则l∥β D.若α⊥β,l∥α,则l⊥β ‎[解析] 对于A项,若l∥α,l∥β,则α∥β或α与β相交,故A项错误;易知B项正确;对于C项,若α⊥β,l⊥α,则l∥β或l⊂β,故C项错误;对于D项,若α⊥β,l∥α,则l与β的位置关系不确定,故D项错误,故选B.‎ ‎5.(2019·河北衡水模拟)已知m,n,l是不同的直线,α,β是不同的平面,在下列命题中:‎ ‎①若m⊥n,l⊥n,则m∥l;‎ ‎②若m⊂α,n⊂β,m⊥n,则α⊥β;‎ ‎③若m∥l,m⊥α,l⊂β,则α⊥β;‎ ‎④若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β.‎ 其中正确命题的序号为( B )‎ A.①③  B.③④ ‎ C.②④  D.①③④‎ ‎ [解析] 如正方体同一个顶点的三条棱,满足①的条件,但三条棱都相交,故①错;如图,α∥β,故②错;因为m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β,故③正确;由面面垂直的性质知,④正确.故正确的命题为③④.故选B.‎ ‎6.(2019·长春质检)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使得平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体A-BCD中,下列说法正确的是( D )‎ A.平面ABD⊥平面ABC B.平面ACD⊥平面BCD C.平面ABC⊥平面BCD D.平面ACD⊥平面ABD ‎[解析] 由题意可知,AD⊥AB,AD=AB,所以∠ABD=45°,故∠DBC=45°,又∠BCD=45°,所以BD⊥DC.因为平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以平面ACD⊥平面ABD.‎ ‎7.(2019·天津模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:‎ ‎①BD⊥AC;‎ ‎②△BAC是等边三角形;‎ ‎③三棱锥D-ABC是正三棱锥;‎ ‎④平面ADC⊥平面ABC.‎ 其中正确的是( B )‎ A.①②④  B.①②③ ‎ C.②③④  D.①③④‎ ‎[解析] 由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错,故选B.‎ ‎8.(2020·宝鸡质检)对于四面体ABCD,给出下列四个命题:‎ ‎①若AB=AC,BD=CD,则BC⊥AD;‎ ‎②若AB=CD,AC=BD,则BC⊥AD;‎ ‎③若AB⊥AC,BD⊥CD,则BC⊥AD;‎ ‎④若AB⊥CD,AC⊥BD,则BC⊥AD.‎ 其中为真命题的是( D )‎ A.①②  B.②③ ‎ C.②④  D.①④‎ ‎[解析] ‎ ‎①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD:④设A在平面BCD内的射影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.‎ 二、填空题 ‎9.(2019·湖南五校联考)已知直线m、l,平面α、β,且m⊥α,l⊂β,给出下列命题:‎ ‎①若α∥β,则m⊥l;②若α⊥β,则m∥l;‎ ‎③若m⊥l,则α⊥β;④若m∥l,则α⊥β.‎ 其中正确的命题是①④ .‎ ‎[解析] 对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确;对于②,若α⊥β,则m∥l或m与l相交或m与l异面,故②错误;对于③,若m⊥l,则α∥β或α与β相交,故③错误;对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β,故④正确.‎ ‎10.(2020·黄冈质检)如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,E,F分别是点A在PB,PC上的射影,给出下列结论:‎ ‎①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.‎ 其中正确结论的序号是①②③ .‎ ‎[解析] ①由于PA⊥平面ABC,因此PA⊥BC,又AC⊥BC,因此BC⊥平面PAC,所以BC⊥AF,由于PC⊥AF,因此AF⊥平面PBC,所以AF⊥PB;②因为AE⊥PB,AF⊥PB,所以PB⊥平面AEF,因此EF⊥PB;③在①中已证明AF⊥BC;④若AE⊥平面PBC,由①知AF⊥平面PBC,由此可得出AF∥AE,这与AF,AE有公共点A矛盾,故AE⊥平面PBC不成立.故正确的结论为①②③.‎ 三、解答题 ‎11. (2019·黑龙江模拟)在三棱柱ABC-A1B‎1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A‎1C的中点.‎ ‎(1)求证:MN∥平面BCC1B1;‎ ‎(2)求证:平面MAC1⊥平面A1B‎1C.‎ ‎ [证明] (1)连接BC1,AC1.‎ 由题意,在三棱柱ABC-A1B‎1C1中,N是A‎1C的中点,‎ ‎∴N是AC1的中点.‎ 在△ABC1中,∵M,N是AB,AC1的中点,‎ ‎∴MN∥BC1.‎ 又∵MN⊄平面BCC1B1,BC1⊂平面BCC1B1,‎ ‎∴MN∥平面BCC1B1.‎ ‎(2)∵三棱柱ABC-A1B‎1C1中,侧棱与底面垂直,‎ ‎∴四边形BCC1B1是正方形,∴BC1⊥B‎1C,‎ ‎∴MN⊥B‎1C.‎ 连接A‎1M,CM,则△AMA1≌△BMC,‎ ‎∴A‎1M=CM.‎ ‎∵N是A‎1C的中点,∴MN⊥A‎1C.‎ ‎∵A‎1C∩B‎1C=C,∴MN⊥平面A1B‎1C.‎ ‎∵MN⊂平面MAC1,∴平面MAC1⊥平面A1B‎1C.‎ ‎12.(2020·河南焦作模拟)如图,在四棱锥P-ABCD中,平面ABCD⊥平面PAB,ABCD为矩形,∠PAB=120°,PA=AB=2,E,F分别为PC,PB的中点.‎ ‎(1)证明:平面DEF⊥平面PBC;‎ ‎(2)若四棱锥P-ABCD的体积为,求该四棱锥的表面积.‎ ‎[解析] (1)因为平面ABCD⊥平面PAB,平面ABCD∩平面PAB=AB,CB⊥AB,所以CB⊥平面ABP,因为EF∥CB,所以EF⊥平面ABP,因为PB⊂平面ABP,所以EF⊥PB,连结AF,则EF∥CB∥AD,所以A,D,E,F四点共面,因为PA=AB=2,所以PB⊥AF,因为AF∩EF=F,所以PB⊥平面EDF,因为PB⊂平面PBC,所以平面DEF⊥平面 PBC.‎ ‎(2)过点P作PN⊥BA于点N,过点N作MN∥AD,交CD的延长线于点M,连结PM,则由(1)可得PN⊥平面BCMN,因为CM⊂平面BCMN,所以PN⊥CM,又因为NM⊥CM,NM∩PN=N,所以CM⊥平面PMN,因为PM⊂平面PMN,所以CM⊥PM,‎ 设AD=a,因为S△ABCD=‎2a,由四棱锥P-ABCD的体积为,所以×‎2a×2sin 60°=,解得a=1,‎ 因为PB2=4+4-2×2×2×cos 120°,‎ 所以PB=2,S△PBC=×2×1=,‎ S△PBA=×2×2×sin 120°=,‎ S△PDA=×2×1=1,‎ 因为PM=2,所以S△PDC=×2×2=2,‎ 所以该四棱锥的表面积为5+2.‎ B组能力提升 ‎1.(2019·湖南衡阳)设α、β是空间两个平面,m、n、l是空间三条直线,则下列四个命题中,逆命题成立的个数是( C )‎ ‎①当n⊂α时,若n⊥β,则α⊥β ‎②当l⊥α时,若l⊥β,则α∥β ‎③当n⊂α,且l⊄α,若l∥α,则n∥l ‎④当n⊂α,且l是m在α内的射影时,若n⊥l,则m⊥n.‎ A.1  B.2 ‎ C.3  D.4‎ ‎[解析] 对于①,逆命题:当n⊂α时,若α⊥β,则n⊥β,由面面垂直的性质定理可知①的逆命题错误;对于②,逆命题:当l⊥α时,若α∥β,则l⊥β,由面面平行的性质可知②的逆命题正确;对于③,逆命题:当n⊂α,且l⊄α时,若n∥l,则l∥α,由线面平行的判定定理可知③的逆命题正确;对于④,逆命题:当n⊂α,且l是m在α内的射影时,若m⊥n,则n⊥l,由三垂线定理可知④的逆命题正确.综上,逆命题成立的序号为②③④,故选C. ‎ ‎2.(2019·云南省昆明市模拟)已知直线l⊥平面α,直线m∥平面β,若α⊥β,则下列结论正确的是( A )‎ A.l∥β或l⊂β  B.l∥m C.m⊥α  D.l⊥m ‎[解析] 对于A,直线l⊥平面α,α⊥β,则l∥β或l⊂β,A正确;对于B,直线l⊥平面α,直线m∥平面β,且α⊥β,则l∥m或l与m相交或l与m异面,∴B错误;对于C,直线l⊥平面α,直线m∥平面β,且α⊥β,则m⊥α或m与α相交或m⊂α或m∥α,∴C错误;对于D,直线l⊥平面α,直线m∥平面β,且α⊥β,则l∥m或l与m相交或l与m异面,∴D错误.故选A.‎ ‎3.设m,n是平面α内的两条不同直线,l1,l2是平面β内两条相交直线,则α⊥β的一个充分不必要条件是( B )‎ A.l1⊥m,l1⊥n  B.m⊥l1,m⊥l2‎ C.m⊥l1,n⊥l2  D.m∥n,l1⊥n ‎[解析] 由m⊥l1,m⊥l2及已知条件可得m⊥β,又m⊂α,所以α⊥β;反之,α⊥β时未必有m⊥l1,m⊥l2,故“m⊥l1,m⊥l‎2”‎是“α⊥β”的充分不必要条件,其余选项均推不出α⊥β,故选B.‎ ‎4.如图,在底面为梯形的四棱锥S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=,SA=SC=SD=2.‎ ‎(1)求证:AC⊥SD;‎ ‎(2)求三棱锥B-SAD的体积.‎ ‎[解析] (1)证明:设O为AC的中点,连接OS,OD.‎ ‎∵SA=SC,∴OS⊥AC.‎ ‎∵DA=DC,∴DO⊥AC.‎ 又∵OS,OD⊂平面SOD,且OS∩DO=O,‎ ‎∴AC⊥平面SOD,且SD⊂平面SOD,‎ ‎∴AC⊥SD.‎ ‎(2)连接BD,在△ASC中,‎ ‎∵SA=SC,∠ASC=60°,点O为AC的中点.‎ ‎∴△ASC为正三角形,且AC=2,OS=.‎ ‎∵在△ADC中,DA2+DC2=4=AC2,O为AC的中点,‎ ‎∴∠ADC=90°,且OD=1.‎ ‎∵在△SOD中,OS2+OD2=SD2,‎ ‎∴∠SOD=90°,∴SO⊥OD.‎ 又∵OS⊥AC,且AC∩DO=O,∴SO⊥平面ABCD.‎ ‎∴VB-SAD=VS-BAD=VS-CAD=S△CAD·SO=×AD·CD·SO=××××=.‎ ‎5.(2020·广东东莞模拟)如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE的位置(如图2所示),连接AP、PF,其中PF=2.‎ ‎(1)求证:PF⊥平面ABED;‎ ‎(2)求点A到平面PBE的距离.‎ ‎[解析] (1)证明:在题图2中,连接EF,‎ 由题意可知,PB=BC=AD=6,PE=CE=CD-DE=9,‎ 在△PBF中,PF2+BF2=20+16=36=PB2,‎ 所以PF⊥BF.‎ 在题图1中,连接EF,作EH⊥AB于点H,利用勾股定理,得EF==,‎ 在△PEF中,EF2+PF2=61+20=81=PE2,∴PF⊥EF,‎ 又∵BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,‎ ‎∴PF⊥平面ABED.‎ ‎(2)如图,连接AE,由(1)知PF⊥平面ABED.‎ ‎∴PF为三棱锥P-ABE的高.‎ 设点A到平面PBE的距离为h,‎ ‎∵VA-PBE=VP-ABE,‎ 即××6×9×h=××12×6×2,‎ ‎∴h=,‎ 即点A到平面PBE的距离为.‎
查看更多

相关文章

您可能关注的文档