- 2021-05-11 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考动点问题
动点问题专题训练 x A O Q P B y 2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 2.解(1)A(8,0)B(0,6) 1分 (2) 点由到的时间是(秒) 点的速度是(单位/秒) 1分 当在线段上运动(或0)时, 1分 当在线段上运动(或)时,, 如图,作于点,由,得, 1分 1分 (自变量取值范围写对给1分,否则不给分.) (3) 1分 3分 A C B P Q E D 图16 5、在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后 立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是 ; (2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. 5.解:(1)1,; (2)作QF⊥AC于点F,如图3, AQ = CP= t,∴. 由△AQF∽△ABC,, 得.∴. A C B P Q E D 图4 ∴, 即. (3)能. ①当DE∥QB时,如图4. ∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. A C B P Q E D 图5 A C(E) ) B P Q D 图6 G A C(E) ) B P Q D 图7 G 由△APQ ∽△ABC,得, 即. 解得. ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得 , 即. 解得. (4)或. ①点P由C向A运动,DE经过点C. 连接QC,作QG⊥BC于点G,如图6. ,. 由,得,解得. ②点P由A向C运动,DE经过点C,如图7. ,】 O E C B D A l O C B A (备用图) 6如图,在中,,.点是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点.过点作交直线于点,设直线的旋转角为. (1)①当 度时,四边形是等腰梯形,此时的长为 ; ②当 度时,四边形是直角梯形,此时的长为 ; (2)当时,判断四边形是否为菱形,并说明理由. 6.解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形. ……………………6分 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC=2. ∴AO== . ……………………8分 在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 ……………………10分 A D C B M N 7如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点 运动.设运动的时间为秒. (1)求的长. (2)当时,求的值. (3)试探究:为何值时,为等腰三角形. 7.解:(1)如图①,过、分别作于,于,则四边形是矩形 ∴ 1分 在中, 2分 在中,由勾股定理得, ∴ 3分 (图①) A D C B K H (图②) A D C B G M N (2)如图②,过作交于点,则四边形是平行四边形 ∵ ∴ ∴ ∴ 4分 由题意知,当、运动到秒时, ∵ ∴ 又 ∴ ∴ 5分 即 解得, 6分 (3)分三种情况讨论: ①当时,如图③,即 ∴ 7分 A D C B M N (图③) (图④) A D C B M N H E ②当时,如图④,过作于 解法一: 由等腰三角形三线合一性质得 在中, 又在中, ∴ 解得 8分 解法二: ∵ ∴ ∴ 即 ∴ 8分 ③当时,如图⑤,过作于点. 解法一:(方法同②中解法一) (图⑤) A D C B H N M F 解得 解法二: ∵ ∴ ∴ 即 ∴ 综上所述,当、或时,为等腰三角形 9分 10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF. 经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; A D F C G E B 图1 A D F C G E B 图2 A D F C G E B 图3 (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 10.解:(1)正确. (1分) A D F C G E B M 证明:在上取一点,使,连接. (2分) .,. 是外角平分线, , . . ,, . (ASA). (5分) . (6分) (2)正确. (7分) 证明:在的延长线上取一点. A D F C G E B N 使,连接. (8分) . . 四边形是正方形, . . . (ASA). (10分) . (11分) 11已知一个直角三角形纸片,其中.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点. x y B O A (Ⅰ)若折叠后使点与点重合,求点的坐标; 11.解(Ⅰ)如图①,折叠后点与点重合, 则. 设点的坐标为. 则. 于是. 在中,由勾股定理,得, 即,解得. 点的坐标为. 4分 x y B O A (Ⅱ)若折叠后点落在边上的点为,设,,试写出关于的函数解析式,并确定的取值范围; (Ⅱ)如图②,折叠后点落在边上的点为, 则. 由题设, 则, 在中,由勾股定理,得. , 即 6分 由点在边上,有, 解析式为所求. 当时,随的增大而减小, 的取值范围为. 7分 (Ⅲ)若折叠后点落在边上的点为,且使,求此时点的坐标. x y B O A (Ⅲ)如图③,折叠后点落在边上的点为,且. 则. 又,有. . 有,得. 9分 在中, 设,则. 由(Ⅱ)的结论,得, 解得. 点的坐标为. 10分 12图(1) A B C D E F M N 如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当CE/CD=1/2时,求AM/BN的值. 方法指导: 为了求得的值,可先求、的长,不妨设:=2 类比归纳 在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 .(用含的式子表示) 联系拓广 图(2) N A B C D E F M 如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 .(用含的式子表示) 12解:方法一:如图(1-1),连接. N 图(1-1) A B C D E F M 由题设,得四边形和四边形关于直线对称. ∴垂直平分.∴ 1分 ∵四边形是正方形,∴ ∵设则 在中,. ∴解得,即 3分 在和在中, , , 5分 设则∴ 解得即 6分 ∴ 7分 方法二:同方法一, 3分 如图(1-2),过点做交于点,连接 N 图(1-2) A B C D E F M G ∵∴四边形是平行四边形. ∴ 同理,四边形也是平行四边形.∴ ∵ 在与中 ∴ 5分 ∵ 6分 ∴ 7分 12..如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16。动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。设运动的时间为t(秒)。 (1)设△DPQ的面积为S,求S与t之间的函数关系式; (2)当t为何值时,四边形PCDQ是平行四边形? (3)分别求出出当t为何值时,① PD=PQ,② DQ=PQ ? 类比归纳 (或);; 10分 联系拓广 12分 解1:依题意,得AQ=t,BP=2t,QD=16-t。过点Q作QF⊥BP,又 ∵AQ‖BF, ∴∠ABP=90° ∴四边形AQFB是矩形 ∴AQ=BF=t ∵BP=2t ∴FP=t, ∴在Rt△QFP中,QP=√(12²+t²) 又∵QD=QP=PD ∴√(12²+t²)=16-t ∴12²+t²=16²-2*16*t+t² ∴解得:t=7/2 解2:如图所示, :这P作PE垂直AD于E,垂足为E点,则ABPE为矩形.PE=AB=12;AE=BP (1).s=1/2×AB×DQ=1/2×12×(AD-AQ)=6×(16-t)=96-6t; (2).当 BC-2t=21-2t=PC=DQ=AD-t=16-t,即t=5时,四边形PCDQO为平形四边形. (3).①QE=AE-AQ=BP-AQ=2t-t=t,而ED=AD-AE=16-BP=16-2t;当QE=ED时,PE为QD的垂直平分线时,PQ=PD,而此时t=16-2t; t=16/3;所以当t=16/3时,PD=PQ; .②在Rt△PEQ中,PE=AB=12; EQ=AE-AQ=PB-AQ=2t-t=t; PQ²=QE²+PE²=t²+12²; QD²=(AD-AQ)²=(16-t)²; 所以当t²+12²=(16-t)²,即:t=3.5时,DQ=PQ; 解:因为∠C=90°,∠CBA=30°,BC=20√3 所以可求出AB=40 如图,圆心从A向B的方向运动时,共有三个位置能使此圆与直线AC或直线BC相切 当圆心在O1点时,设切点为P 显然PO1=6,∠APO1=90°,∠AO1P=30° 所以AO1=4√3 因为圆O以2个单位长度/秒的速度向右运动 所以当t1=4√3/2=2√3(秒)时,圆O与直线AC相切 当圆心在O2点时,设切点为Q 显然QO2=6,∠BQO2=90°,∠QBO2=30° 所以BO2=12,AO2=40-12=28 因为圆O以2个单位长度/秒的速度向右运动 所以当t2=28/2=14(秒)时,圆O与直线BC相切 当圆心在O3点时,设切点为R 显然RO3=6,∠BRO3=90°,∠RBO3=30° 所以BO3=12,AO3=40+12=52 因为圆O以2个单位长度/秒的速度向右运动 所以当t3=52/2=26(秒)时,圆O与直线BC相切 综上所述,当圆O运动2√3秒、14秒、26秒时与△ABC的一边所在的直线相切.查看更多