- 2021-05-11 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
通用版五年2016_2020高考化学真题专题点拨专题07电化学及其应用含解析
专题07 电化学及其应用 【2020年】 1.(2020·新课标Ⅰ)科学家近年发明了一种新型Zn−CO2水介质电池。电池示意图如图,电极为金属锌和选择性催化材料,放电时,温室气体CO2被转化为储氢物质甲酸等,为解决环境和能源问题提供了一种新途径。 下列说法错误的是 A. 放电时,负极反应为 B. 放电时,1 mol CO2转化为HCOOH,转移的电子数为2 mol C. 充电时,电池总反应为 D. 充电时,正极溶液中OH−浓度升高 【答案】D 【解析】由题可知,放电时,CO2转化为HCOOH,即CO2发生还原反应,故放电时右侧电极为正极,左侧电极为负极,Zn发生氧化反应生成;充电时,右侧为阳极,H2O发生氧化反应生成O2,左侧为阴极,发生还原反应生成Zn,以此分析解答。放电时,负极上Zn发生氧化反应,电极反应式为:,故A正确;放电时,CO2转化为HCOOH,C元素化合价降低2,则1molCO2转化为HCOOH时,转移电子数为2mol,故B正确;充电时,阳极上H2O转化为O2,负极上转化为Zn,电池总反应为:,故C正确;充电时,正极即为阳极,电极反应式为:,溶液中H+浓度增大,溶液中c(H+)•c(OH-)=KW,温度不变时,KW不变,因此溶液中OH-浓度降低,故D错误。 25 2.(2020·新课标Ⅱ)电致变色器件可智能调控太阳光透过率,从而实现节能。下图是某电致变色器件的示意图。当通电时,Ag+注入到无色WO3薄膜中,生成AgxWO3,器件呈现蓝色,对于该变化过程,下列叙述错误的是 A. Ag为阳极 B. Ag+由银电极向变色层迁移 C. W元素的化合价升高 D. 总反应为:WO3+xAg=AgxWO3 【答案】C 【解析】通电时,Ag电极有Ag+生成,故Ag电极为阳极,故A项正确;通电时电致变色层变蓝色,说明有Ag+从Ag电极经固体电解质进入电致变色层,故B项正确;过程中,W由WO3的+6价降低到AgxWO3中的+(6-x)价,故C项错误;该电解池中阳极即Ag电极上发生的电极反应为:xAg-xe-= xAg+,而另一极阴极上发生的电极反应为:WO3+xAg++xe- = AgxWO3,故发生的总反应式为:xAg + WO3=AgxWO3,故D项正确;答案选C。 3.(2020·新课标Ⅲ)一种高性能的碱性硼化钒(VB2)—空气电池如下图所示,其中在VB2电极发生反应:该电池工作时,下列说法错误的是 A. 负载通过0.04 mol电子时,有0.224 L(标准状况)O2参与反应 B. 正极区溶液的pH降低、负极区溶液的pH升高 C. 电池总反应为 D. 电流由复合碳电极经负载、VB2电极、KOH溶液回到复合碳电极 25 【答案】B 【解析】根据图示的电池结构,左侧VB2发生失电子的反应生成和,反应的电极方程式如题干所示,右侧空气中的氧气发生得电子的反应生成OH-,反应的电极方程式为O2+4e-+2H2O=4OH-,电池的总反应方程式为4VB2+11O2+20OH-+6H2O=8+4,据此分析。当负极通过0.04mol电子时,正极也通过0.04mol电子,根据正极的电极方程式,通过0.04mol电子消耗0.01mol氧气,在标况下为0.224L,A正确;反应过程中正极生成大量的OH-使正极区pH升高,负极消耗OH-使负极区OH-浓度减小pH降低,B错误;根据分析,电池的总反应为4VB2+11O2+20OH-+6H2O=8+4,C正确;电池中,电子由VB2电极经负载流向复合碳电极,电流流向与电子流向相反,则电流流向为复合碳电极→负载→VB2电极→KOH溶液→复合碳电极,D正确。 4.(2020·江苏卷)将金属M连接在钢铁设施表面,可减缓水体中钢铁设施的腐蚀。在题图所示的情境中,下列有关说法正确的是 A. 阴极的电极反应式为 B. 金属M的活动性比Fe的活动性弱 C. 钢铁设施表面因积累大量电子而被保护 D. 钢铁设施在河水中的腐蚀速率比在海水中的快 【答案】C 【解析】该装置为原电池原理的金属防护措施,为牺牲阳极的阴极保护法,金属M作负极,钢铁设备作正极,据此分析解答。阴极的钢铁设施实际作原电池的正极,正极金属被保护不失电子,故A错误;阳极金属M实际为原电池装置的负极,电子流出,原电池中负极金属比正极活泼,因此M活动性比Fe的活动性强,故B错误;金属M失电子,电子经导线流入钢铁设备,从而使钢铁设施表面积累大量电子,自身金属不再失电子从而被保护,故C正确;海水中的离子浓度大于河水中的离子浓度,离子浓度越大,溶液的导电性越强,因此钢铁设施在海水中的腐蚀速率比在河水中快,故D错误;故选C。 25 5.(2020·山东卷)微生物脱盐电池是一种高效、经济的能源装置,利用微生物处理有机废水获得电能,同时可实现海水淡化。现以NaCl溶液模拟海水,采用惰性电极,用下图装置处理有机废水(以含 CH3COO-的溶液为例)。下列说法错误的是 A. 负极反应为 B. 隔膜1为阳离子交换膜,隔膜2为阴离子交换膜 C. 当电路中转移1mol电子时,模拟海水理论上除盐58.5g D. 电池工作一段时间后,正、负极产生气体的物质的量之比为2:1 【答案】B 【解析】据图可知a极上CH3COOˉ转化为CO2和H+,C元素被氧化,所以a极为该原电池的负极,则b极为正极。a极为负极,CH3COOˉ失电子被氧化成CO2和H+,结合电荷守恒可得电极反应式为CH3COOˉ+2H2O-8eˉ=2CO2↑+7H+,故A正确;为了实现海水的淡化,模拟海水中的氯离子需要移向负极,即a极,则隔膜1为阴离子交换膜,钠离子需要移向正极,即b极,则隔膜2为阳离子交换膜,故B错误; 当电路中转移1mol电子时,根据电荷守恒可知,海水中会有1molClˉ移向负极,同时有1molNa+移向正极,即除去1molNaCl,质量为58.5g,故C正确;b极为正极,水溶液为酸性,所以氢离子得电子产生氢气,电极反应式为2H++2eˉ=H2↑,所以当转移8mol电子时,正极产生4mol气体,根据负极反应式可知负极产生2mol气体,物质的量之比为4:2=2:1,故D正确;故答案为B。 6.(2020·山东卷)采用惰性电极,以去离子水和氧气为原料通过电解法制备双氧水的装置如下图所示。忽略温度变化的影响,下列说法错误的是 25 A. 阳极反应 B. 电解一段时间后,阳极室的pH未变 C. 电解过程中,H+由a极区向b极区迁移 D. 电解一段时间后,a极生成的O2与b极反应的O2等量 【答案】D 【解析】a极析出氧气,氧元素的化合价升高,做电解池的阳极,b极通入氧气,生成过氧化氢,氧元素的化合价降低,被还原,做电解池的阴极。依据分析a极是阳极,属于放氧生酸性型的电解,所以阳极的反应式是2H2O-4e-=4H++O2↑,故A正确;电解时阳极产生氢离子,氢离子是阳离子,通过质子交换膜移向阴极,所以电解一段时间后,阳极室的pH值不变,故BC正确;电解时,阳极的反应为:2H2O-4e-=4H++O2↑,阴极的反应为:O2+2e-+2H+=H2O2,总反应为:O2+2H2O=2H2O2,要消耗氧气,即是a极生成的氧气小于b极消耗的氧气,故D错误。 7.(2020·天津卷)熔融钠-硫电池性能优良,是具有应用前景的储能电池。下图中的电池反应为(x=5~3,难溶于熔融硫),下列说法错误的是 A. Na2S4的电子式为 B. 放电时正极反应为 C. Na和Na2Sx分别为电池的负极和正极 25 D. 该电池是以为隔膜的二次电池 【答案】C 【解析】根据电池反应:可知,放电时,钠作负极,发生氧化反应,电极反应为:Na-e-= Na+,硫作正极,发生还原反应,电极反应为,据此分析。Na2S4属于离子化合物,4个硫原子间形成三对共用电子对,电子式为,故A正确;放电时发生的是原电池反应,正极发生还原反应,电极反应为:,故B正确;放电时,Na为电池的负极,正极为硫单质,故C错误;放电时,该电池是以钠作负极,硫作正极的原电池,充电时,是电解池,为隔膜,起到电解质溶液的作用,该电池为二次电池,故D正确;答案选C 8.(2020·浙江卷)电解高浓度(羧酸钠)的溶液,在阳极放电可得到(烷烃)。下列说法不正确的是( ) A. 电解总反应方程式: B. 在阳极放电,发生氧化反应 C. 阴极的电极反应: D. 电解、和混合溶液可得到乙烷、丙烷和丁烷 【答案】A 【解析】因为阳极RCOO-放电可得到R-R(烷烃)和产生CO2,在强碱性环境中,CO2会与OH-反应生成CO32-和H2O,故阳极的电极反应式为2RCOO--2e-+4OH-=R-R+2CO32-+2H2O,阴极上H2O电离产生的H+放电生成H2,同时生成OH-,阴极的电极反应式为2H2O+2e-=2OH-+H2↑,因而电解总反应方程式为2RCOONa+2NaOHR-R+2Na2CO3+H2↑,故A错误;RCOO-在阳极放电,电极反应式为2RCOO--2e-+4OH-=R-R+2CO32-+2H2O, -COO-中碳元素的化合价由+3价升高为+4价,发生氧化反应,烃基-R中元素的化合价没有发生变化,故B正确;阴极上H2O电离产生的H+放电生成H2,同时生成OH-,阴极的电极反应为2H2O+2e-=2OH-+H2↑,故C正确;根据题中信息,由上述电解总反应方程式可以确定下列反应能够发生:2CH3COONa+2NaOHCH3-CH3+2Na2CO3+H2↑,2CH3CH2COONa+2NaOH 25 CH3CH2-CH2CH3+2Na2CO3+H2↑,CH3COONa+CH3CH2COONa+2NaOHCH3-CH2CH3+2Na2CO3+H2↑。因此,电解CH3COONa、CH3CH2COONa和NaOH 的混合溶液可得到乙烷、丙烷和丁烷,D正确。 【2019年】 1.[2019·新课标Ⅰ卷]利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意图如下所示。下列说法错误的是 A.相比现有工业合成氨,该方法条件温和,同时还可提供电能 B.阴极区,在氢化酶作用下发生反应H2+2MV2+2H++2MV+ C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3 D.电池工作时质子通过交换膜由负极区向正极区移动 【答案】B 【解析】相比现有工业合成氨,该方法选用酶作催化剂,条件温和,同时利用MV+和MV2+的相互转化,化学能转化为电能,故可提供电能,故A正确;左室为负极区,MV+在负极失电子发生氧化反应生成MV2+,电极反应式为MV+−e−= MV2+,放电生成的MV2+在氢化酶的作用下与H2反应生成H+和MV+,反应的方程式为H2+2MV2+=2H++2MV+,故B错误;右室为正极区,MV2+在正极得电子发生还原反应生成MV+,电极反应式为MV2++e−= MV+,放电生成的MV+与N2在固氮酶的作用下反应生成NH3和MV2+,故C正确;电池工作时,氢离子(即质子)通过交换膜由负极向正极移动,故D正确。 2.[2019·新课标Ⅲ卷]为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状Zn(3D−Zn)可以高效沉积ZnO的特点,设计了采用强碱性电解质的3D−Zn—NiOOH二次电池,结构如下图所示。电池反应为Zn(s)+2NiOOH(s)+H2O(l)ZnO(s)+2Ni(OH)2(s)。 下列说法错误的是 25 A.三维多孔海绵状Zn具有较高的表面积,所沉积的ZnO分散度高 B.充电时阳极反应为Ni(OH)2(s)+OH−(aq)−e−===NiOOH(s)+H2O(l) C.放电时负极反应为Zn(s)+2OH−(aq)−2e−===ZnO(s)+H2O(l) D.放电过程中OH−通过隔膜从负极区移向正极区 【答案】D 【解析】三维多孔海绵状Zn具有较高的表面积,吸附能力强,所沉积的ZnO分散度高,A正确;充电相当于是电解池,阳极发生失去电子的氧化反应,根据总反应式可知阳极是Ni(OH)2失去电子转化为NiOOH,电极反应式为Ni(OH)2(s)+OH− (aq)− e− =NiOOH(s)+H2O(l),B正确;放电时相当于是原电池,负极发生失去电子的氧化反应,根据总反应式可知负极反应式为Zn(s)+2OH− (aq)− 2e− =ZnO(s)+H2O(l),C正确; 原电池中阳离子向正极移动,阴离子向负极移动,则放电过程中OH− 通过隔膜从正极区移向负极区,D错误。 3.[2019·天津卷]我国科学家研制了一种新型的高比能量锌−碘溴液流电池,其工作原理示意图如下。图中贮液器可储存电解质溶液,提高电池的容量。 下列叙述不正确的是( ) A.放电时,a电极反应为 B.放电时,溶液中离子的数目增大 C.充电时,b电极每增重,溶液中有被氧化 25 D.充电时,a电极接外电源负极 【答案】D 【解析】放电时,a电极为正极,碘得电子变成碘离子,正极反应式为I2Br− +2e− =2I− +Br− ,故A正确; 放电时,正极反应式为I2Br− +2e− =2I− +Br− ,溶液中离子数目增大,故B正确;充电时,b电极反应式为Zn2++2e− =Zn,每增加0.65g,转移0.02mol电子,阳极反应式为Br− +2I− −2e− =I2Br− ,有0.02molI− 失电子被氧化,故C正确;充电时,a是阳极,应与外电源的正极相连,故D错误。 4.[2019`江苏卷]将铁粉和活性炭的混合物用NaCl溶液湿润后,置于如图所示装置中,进行铁的电化学腐蚀实验。下列有关该实验的说法正确的是 A.铁被氧化的电极反应式为Fe−3e−Fe3+ B.铁腐蚀过程中化学能全部转化为电能 C.活性炭的存在会加速铁的腐蚀 D.以水代替NaCl溶液,铁不能发生吸氧腐蚀 【答案】C 【解析】在铁的电化学腐蚀中,铁单质失去电子转化为二价铁离子,即负极反应为:Fe−2e−=Fe2+,故A错误;铁的腐蚀过程中化学能除了转化为电能,还有一部分转化为热能,故B错误;活性炭与铁混合,在氯化钠溶液中构成了许多微小的原电池,加速了铁的腐蚀,故C正确;以水代替氯化钠溶液,水也呈中性,铁在中性或碱性条件下易发生吸氧腐蚀,故D错误。 5. [2019·浙江卷]化学电源在日常生活和高科技领域中都有广泛应用。下列说法不正确的是 25 A. Zn2+向Cu电极方向移动,Cu电极附近溶液中H+浓度增加 B. 正极的电极反应式为Ag2O+2e−+H2O2Ag+2OH− C. 锌筒作负极,发生氧化反应,锌筒会变薄 D. 使用一段时间后,电解质溶液的酸性减弱,导电能力下降 【答案】A 【解析】Zn较Cu活泼,做负极,Zn失电子变Zn2+,电子经导线转移到铜电极,铜电极负电荷变多,吸引了溶液中的阳离子,因而Zn2+和H+迁移至铜电极,H+氧化性较强,得电子变H2,因而c(H+)减小,A项错误;Ag2O作正极,得到来自Zn失去的电子,被还原成Ag,结合KOH作电解液,故电极反应式为Ag2O+2e−+H2O2Ag+2OH−,B项正确;Zn为较活泼电极,做负极,发生氧化反应,电极反应式为Zn−2e−=Zn2+,锌溶解,因而锌筒会变薄,C项正确;铅蓄电池总反应式为PbO2 + Pb + 2H2SO4 2PbSO4 + 2H2O,可知放电一段时间后,H2SO4不断被消耗,因而电解质溶液的酸性减弱,导电能力下降,D项正确。 6.[2019·新课标Ⅱ卷节选]环戊二烯()是重要的有机化工原料,广泛用于农药、橡胶、塑料等生产。回答下列问题: (4)环戊二烯可用于制备二茂铁(Fe(C5H5)2,结构简式为 25 ),后者广泛应用于航天、化工等领域中。二茂铁的电化学制备原理如下图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯的DMF溶液(DMF为惰性有机溶剂)。 该电解池的阳极为____________,总反应为__________________。电解制备需要在无水条件下进行,原因为_________________________。 【答案】(4)Fe电极 Fe+2+H2↑(Fe+2C5H6Fe(C5H5)2+H2↑) 水会阻碍中间物Na的生成;水会电解生成OH−,进一步与Fe2+反应生成Fe(OH)2 【解析】(4)根据阳极升失氧可知Fe为阳极;根据题干信息Fe−2e−=Fe2+,电解液中钠离子起到催化剂的作用使得环戊二烯得电子生成氢气,同时与亚铁离子结合生成二茂铁,故电极反应式为Fe+2=+H2↑;电解必须在无水条件下进行,因为中间产物Na会与水反应生成氢氧化钠和氢气,亚铁离子会和氢氧根离子结合生成沉淀; 答案:Fe电极;Fe+2=+H2↑(Fe+2C5H6=Fe(C2H5)2+ H2↑);水会阻碍中间物Na的生成;水会电解生成OH−,进一步与Fe2+反应生成Fe(OH)2。 7.[2019·新课标Ⅲ卷节选]近年来,随着聚酯工业的快速发展,氯气的需求量和氯化氢的产出量也随之迅速增长。因此,将氯化氢转化为氯气的技术成为科学研究的热点。回答下列问题: (4)在传统的电解氯化氢回收氯气技术的基础上,科学家最近采用碳基电极材料设计了一种新的工艺方案,主要包括电化学过程和化学过程,如下图所示: 25 负极区发生的反应有____________________(写反应方程式)。电路中转移1 mol电子,需消耗氧气__________L(标准状况)。 【答案】(4)Fe3++e−=Fe2+,4Fe2++O2+4H+=4Fe3++2H2O 5.6 【解析】(4)电解过程中,负极区即阴极上发生的是得电子反应,元素化合价降低,属于还原反应,则图中左侧为负极反应,根据图示信息知电极反应为:Fe3++e− =Fe2+和4Fe2++O2+4H+=4Fe3++2H2O;电路中转移1 mol电子,根据电子得失守恒可知需消耗氧气的物质的量是1mol÷4=0.25mol,在标准状况下的体积为0.25mol×22.4L/mol=5.6L。 8.[2019·北京卷节选]氢能源是最具应用前景的能源之一,高纯氢的制备是目前的研究热点。 (2)可利用太阳能光伏电池电解水制高纯氢,工作示意图如下。通过控制开关连接K1或K2,可交替得到H2和O2。 ①制H2时,连接_______________。产生H2的电极反应式是_______________。 ②改变开关连接方式,可得O2。 ③结合①和②中电极3的电极反应式,说明电极3的作用:________________________。 【答案】(2)K1 2H2O+2e−=H2↑+2OH− 连接K1或K2时,电极3分别作为阳极材料和阴极材料,并且NiOOH和Ni(OH)2相互转化提供电子转移 【解析】(2)①电极生成H2时,根据电极放电规律可知H+得到电子变为氢气,因而电极须连接负极,因而制H2时,连接K1,该电池在碱性溶液中,由H2O提供H+,电极反应式为2H2O+2e−=H2↑+2OH−; ③电极3上NiOOH和Ni(OH)2相互转化,其反应式为NiOOH+e−+H2O⇌Ni(OH)2+OH−,当连接K1 25 时,Ni(OH)2失去电子变为NiOOH,当连接K2时,NiOOH得到电子变为Ni(OH)2,因而作用是连接K1或K2时,电极3分别作为阳极材料和阴极材料,并且NiOOH和Ni(OH)2相互转化提供电子转移。 9.[2019·江苏卷节选]CO2的资源化利用能有效减少CO2排放,充分利用碳资源。 (2)电解法转化CO2可实现CO2资源化利用。电解CO2制HCOOH的原理示意图如下。 ①写出阴极CO2还原为HCOO−的电极反应式: ▲ 。 ②电解一段时间后,阳极区的KHCO3溶液浓度降低,其原因是 ▲ 。 【答案】(2)①CO2+H++2e−HCOO−或CO2+ HCO3−+2e−HCOO−+ CO32− ②阳极产生O2,pH减小,HCO3−浓度降低;K+部分迁移至阴极区 【解析】(2)①根据电解原理,阴极上得到电子,化合价降低,CO2+HCO3−+2e− =HCOO−+CO32−,或CO2+H++2e− =HCOO−;②阳极反应式为2H2O−4e− =O2↑+4H+,阳极附近pH减小,H+与HCO3− 反应,同时部分K+迁移至阴极区,所以电解一段时间后,阳极区的KHCO3溶液浓度降低。 10.[2019浙江选考节选]水是“生命之基质”,是“永远值得探究的物质”。 (4)以铂阳极和石墨阴极设计电解池,通过电解NH4HSO4溶液产生(NH4)2S2O8,再与水反应得到H2O2,其中生成的NH4HSO4可以循环使用。 ①阳极的电极反应式是________。 ②制备H2O2的总反应方程式是________。 【答案】(4)①2HSO4−− 2e− S2O82−+2H+或2SO42−− 2e− S2O82− ②2H2OH2O2+H2↑ 【解析】(4)①电解池使用惰性电极,阳极本身不参与反应,阳极吸引HSO4−(或SO42−)离子,并放电生成S2O82−,因而电极反应式为2HSO4−− 2e− =S2O82−+2H+或2SO42−− 2e− =S2O82− 。 ②通过电解NH4HSO4溶液产生(NH4)2S2O8和H2。由题中信息可知,生成的NH4HSO4可以循环使用,说明(NH4)2S2O8与水反应除了生成H2O2,还有NH4HSO4 25 生成,因而总反应中只有水作反应物,产物为H2O2和H2,故总反应方程式为2H2OH2O2+H2↑。 【2018年】 1. (2018·全国卷Ⅰ卷)硫酸亚铁锂(LiFePO4)电池是新能源汽车的动力电池之一。采用湿法冶金工艺回收废旧硫酸亚铁锂电池正极片中的金属,其流程如下: 下列叙述错误的是 A. 合理处理废旧电池有利于保护环境和资源再利用 B. 从“正极片”中可回收的金属元素有Al、Fe、Li C. “沉淀”反应的金属离子为Fe3+ D. 上述流程中可用硫酸钠代替碳酸钠 【答案】D 【解析】正极片碱溶时铝转化为偏铝酸钠,滤渣中含有磷酸亚铁锂,加入硫酸和硝酸酸溶,过滤后滤渣是炭黑,得到含Li、P、Fe的滤液,加入碱液生成氢氧化铁沉淀,滤液中加入碳酸钠生成含锂的沉淀,据此解答。废旧电池中含有重金属,随意排放容易污染环境,因此合理处理废旧电池有利于保护环境和资源再利用,A正确;根据流程的转化可知从正极片中可回收的金属元素有Al、Fe、Li,B正确;得到含Li、P、Fe的滤液,加入碱液生成氢氧化铁沉淀,因此“沉淀”反应的金属离子是Fe3+,C正确; 硫酸锂能溶于水,因此上述流程中不能用硫酸钠代替碳酸钠,D错误。 2. (2018·全国卷Ⅰ卷)最近我国科学家设计了一种CO2+H2S协同转化装置,实现对天然气中CO2和H2S的高效去除。示意图如图所示,其中电极分别为ZnO@石墨烯(石墨烯包裹的ZnO)和石墨烯,石墨烯电极区发生反应为: 25 ①EDTA-Fe2+-e-=EDTA-Fe3+ ②2EDTA-Fe3++H2S=2H++S+2EDTA-Fe2+ 该装置工作时,下列叙述错误的是 A. 阴极的电极反应:CO2+2H++2e-=CO+H2O B. 协同转化总反应:CO2+H2S=CO+H2O+S C. 石墨烯上的电势比ZnO@石墨烯上的低 D. 若采用Fe3+/Fe2+取代EDTA-Fe3+/EDTA-Fe2+,溶液需为酸性 【答案】C 【解析】该装置属于电解池,CO2在ZnO@石墨烯电极上转化为CO,发生得到电子的还原反应,为阴极,石墨烯电极为阳极,发生失去电子的氧化反应,据此解答。CO2在ZnO@石墨烯电极上转化为CO,发生得到电子的还原反应,为阴极,电极反应式为CO2+H++2e-=CO+H2O,A正确;根据石墨烯电极上发生的电极反应可知①+②即得到H2S-2e-=2H++S,因此总反应式为CO2+H2S=CO+H2O+S,B正确;石墨烯电极为阳极,与电源的正极相连,因此石墨烯上的电势比ZnO@石墨烯电极上的高,C错误;由于铁离子、亚铁离子均易水解,所以如果采用Fe3+/Fe2+取代EDTA-Fe3+/EDTA-Fe2+,溶液需要酸性,D正确。 3. (2018·全国卷II)我国科学家研发了一种室温下“可呼吸”的Na—CO2二次电池。将NaClO4溶于有机溶剂作为电解液,钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为:3CO2+4Na2Na2CO3+C。下列说法错误的是 25 A. 放电时,ClO4-向负极移动 B. 充电时释放CO2,放电时吸收CO2 C. 放电时,正极反应为:3CO2+4e− =2CO32-+C D. 充电时,正极反应为:Na++e−=Na 【答案】D 【解析】原电池中负极发生失去电子的氧化反应,正极发生得到电子的还原反应,阳离子向正极移动,阴离子向负极移动,充电可以看作是放电的逆反应,据此解答。放电时是原电池,阴离子ClO4-向负极移动,A正确;电池的总反应为3CO2+4Na2Na2CO3+C,因此充电时释放CO2,放电时吸收CO2,B正确; 放电时是原电池,正极是二氧化碳得到电子转化为碳,反应为:3CO2+4e−=2CO32-+C,C正确;充电时是电解,正极与电源的正极相连,作阳极,发生失去电子的氧化反应,反应为2CO32-+C-4e−=3CO2,D错误。 4. (2018·全国卷Ⅲ)一种可充电锂-空气电池如图所示。当电池放电时,O2与Li+在多孔碳材料电极处生成Li2O2-x(x=0或1)。下列说法正确的是 A. 放电时,多孔碳材料电极为负极 B. 放电时,外电路电子由多孔碳材料电极流向锂电极 C. 充电时,电解质溶液中Li+向多孔碳材料区迁移 D. 充电时,电池总反应为Li2O2-x=2Li+(1-)O2 【答案】D 25 【解析】放电时,O2与Li+在多孔碳电极处反应,说明电池内,Li+向多孔碳电极移动,因为阳离子移向正极,所以多孔碳电极为正极,A错误。因为多孔碳电极为正极,外电路电子应该由锂电极流向多孔碳电极(由负极流向正极),B错误。充电和放电时电池中离子的移动方向应该相反,放电时,Li+向多孔碳电极移动,充电时向锂电极移动,C错误。根据图示和上述分析,电池的正极反应应该是O2与Li+得电子转化为Li2O2-X,电池的负极反应应该是单质Li失电子转化为Li+,所以总反应为:2Li + (1-)O2 = Li2O2-X,充电的反应与放电的反应相反,所以为Li2O2-X = 2Li + (1-)O2, D正确。 5. (2018·北京卷)验证牺牲阳极的阴极保护法,实验如下(烧杯内均为经过酸化的3%NaCl溶液)。 ① ② ③ 在Fe表面生成蓝色沉淀 试管内无明显变化 试管内生成蓝色沉淀 下列说法不正确的是 A. 对比②③,可以判定Zn保护了Fe B. 对比①②,K3[Fe(CN)6]可能将Fe氧化 C. 验证Zn保护Fe时不能用①的方法 D. 将Zn换成Cu,用①的方法可判断Fe比Cu活泼 【答案】D 【解析】对比②③,②Fe附近的溶液中加入K3[Fe(CN)6]无明显变化,②Fe附近的溶液中不含Fe2+,③Fe附近的溶液中加入K3[Fe(CN)6]产生蓝色沉淀,③Fe附近的溶液中含Fe2+,②中Fe被保护,A正确;①加入K3[Fe(CN)6]在Fe表面产生蓝色沉淀,Fe表面产生了Fe2+,对比①②的异同,①可能是K3[Fe(CN)6]将Fe氧化成Fe2+,B正确;对比①②,①加入K3[Fe(CN)6]在Fe表面产生蓝色沉淀,①也能检验出Fe2+,不能用①的方法验证Zn保护Fe,C正确;由实验可知K3[Fe(CN)6]可能将Fe氧化成Fe2+,将Zn换成Cu不能用①的方法证明Fe比Cu活泼,D错误。 25 【2017年】 1.【2017·新课标1卷】支撑海港码头基础的钢管桩,常用外加电流的阴极保护法进行防腐,工作原理如图所示,其中高硅铸铁为惰性辅助阳极。下列有关表述不正确的是 [来源:学科网ZXXK] A.通入保护电流使钢管桩表面腐蚀电流接近于零 B.通电后外电路电子被强制从高硅铸铁流向钢管桩 C.高硅铸铁的作用是作为损耗阳极材料和传递电流 D.通入的保护电流应该根据环境条件变化进行调整 【答案】C 【解析】本题使用的是外加电流的阴极保护法,钢管柱与电源的负极相连,被保护。外加强大的电流可以抑制金属电化学腐蚀产生的电流,从而保护钢管柱,A正确;通电后,被保护的钢管柱作阴极,高硅铸铁作阳极,因此电路电子被强制从高硅铸铁流向钢管桩,B正确;高硅铸铁为惰性辅助阳极,所以高硅铸铁不损耗,C错误;通过外加电流抑制金属电化学腐蚀产生的电流,因此通入的保护电流应该根据环境条件变化进行调整,D正确。 2.【2017·新课标2卷】用电解氧化法可以在铝制品表面形成致密、耐腐蚀的氧化膜,电解质溶液一般为混合溶液。下列叙述错误的是 A.待加工铝质工件为阳极 B.可选用不锈钢网作为阴极 C.阴极的电极反应式为: D.硫酸根离子在电解过程中向阳极移动 【答案】C 【解析】根据原理可知,Al要形成氧化膜,化合价升高失电子,因此铝为阳极,A正确;不锈钢网接触面积大,能增加电解效率,B正确;阴极应为阳离子得电子,根据离子放电顺序应是H+放电,即2H++2e−=H2↑,C错误;根据电解原理,电解时,阴离子移向阳极,D正确。 25 3.【2017·新课标3卷】全固态锂硫电池能量密度高、成本低,其工作原理如图所示,其中电极a常用掺有石墨烯的S8材料,电池反应为:16Li+xS8=8Li2Sx(2≤x≤8)。下列说法错误的是 A.电池工作时,正极可发生反应:2Li2S6+2Li++2e-=3Li2S4 B.电池工作时,外电路中流过0.02mol电子,负极材料减重0.14g C.石墨烯的作用主要是提高电极a的导电性 D.电池充电时间越长,电池中Li2S2的量越多 【答案】D 【解析】本题使用的是外加电流的阴极保护法,钢管柱与电源的负极相连,被保护。外加强大的电流可以抑制金属电化学腐蚀产生的电流,从而保护钢管柱,A正确;通电后,被保护的钢管柱作阴极,高硅铸铁作阳极,因此电路电子被强制从高硅铸铁流向钢管桩,B正确;高硅铸铁为惰性辅助阳极,所以高硅铸铁不损耗,C错误;通过外加电流抑制金属电化学腐蚀产生的电流,因此通入的保护电流应该根据环境条件变化进行调整,D正确。 4.【2017·江苏卷】下列说法正确的是 A.反应N2(g)+3H2(g)2NH3(g)的ΔH<0,ΔS>0 B.地下钢铁管道用导线连接锌块可以减缓管道的腐蚀 C.常温下,Ksp[Mg(OH)2]=5.6×10−12,pH=10的含Mg2+溶液中,c(Mg2+)≤5.6×10−4mol·L−1 D.常温常压下,锌与稀H2SO4反应生成11.2LH2,反应中转移的电子数为6.02×1023 【答案】BC 【解析】该反应气体的分子数减少了,所以是熵减的反应,△S<0,A错误;锌比铁活泼,形成原电池时锌做负极,所以可以减缓钢铁管道的腐蚀,B正确;常温下,在pH=10的溶液中,c(OH-)=1mol/L,溶液中含Mg2+浓度最大值为=5.6mol/L,C正确;在锌和稀硫酸的反应中每生成1mol H2,电子转移的数目为2mol e-,在常温常压下,11.2LH2的物质的量不是0.5mol,所以反应中转移的电子数不是6.02 25 ,D错误。 【2016年】 1.【2016·北京卷】用石墨电极完成下列电解实验。 实验一 实验二 装置 [来源:Z#xx#k.Com] 现象 a、d处试纸变蓝;b处变红,局部褪色;c处无明显变化 两个石墨电极附近有气泡产生;n处有气泡产生;…… 下列对实验现象的解释或推测不合理的是( ) A.a、d处:2H2O+2e-=H2↑+2OH- B.b处:2Cl--2e-=Cl2↑ C.c处发生了反应:Fe-2e-=Fe2+ D.根据实验一的原理,实验二中m处能析出铜 【答案】B 【解析】a、d处试纸变蓝,说明溶液显碱性,是溶液中的氢离子得到电子生成氢气,破坏了水的电离平衡,氢氧根离子浓度增大造成的,A正确;b处变红,局部褪色,说明是溶液中的氢氧根和氯离子同时放电,分别产生氧气和氯气,氢离子浓度增大,酸性增强,氯气与水反应生成的次氯酸具有漂白性,B错误;c处为阳极,铁失去电子生成亚铁离子,C正确;实验一中ac形成电解池,db形成电解池,所以实验二中也相当于形成三个电解池(一个球两面为不同的两极),m为电解池的阴极,另一球朝m的一面为阳极(n的背面),故相当于电镀,即m上有铜析出,D正确。 2.【2016·海南卷】某电池以K2FeO4和Zn为电极材料,KOH溶液为电解溶质溶液。下列说法正确的是( ) A.Zn为电池的负极 B.正极反应式为2FeO42−+ 10H++6e−=Fe2O3+5H2O C.该电池放电过程中电解质溶液浓度不变 25 D.电池工作时向负极迁移 【答案】AD 【解析】根据化合价升降判断,Zn化合价只能上升,故为负极材料,K2FeO4为正极材料,A正确;KOH 溶液为电解质溶液,则正极反应式为2FeO42− +6e−+8H2O =2Fe(OH)3+10OH−,B错误;该电池放电过程中电 解质溶液浓度减小,C错误;电池工作时阴离子OH−向负极迁移,D正确。 3.【2016·上海卷】图1是铜锌原电池示意图。图2中,x轴表示实验时流入正极的电子的物质的量,y轴表示( ) A.铜棒的质量 B.c(Zn2+) C.c(H+) D.c(SO42-) 【答案】C 【解析】该装置构成原电池,Zn是负极,Cu是正极。在正极Cu上溶液中的H+获得电子变为氢气,Cu棒的质量不变,A错误;由于Zn是负极,不断发生反应Zn-2e-=Zn2+,所以溶液中c(Zn2+)增大,B错误;由于反应不断消耗H+,所以溶液的c(H+)逐渐降低,C正确;SO42-不参加反应,其浓度不变,D错误。 4.【2016·四川卷】某电动汽车配载一种可充放电的锂离子电池。放电时电池的总反应为:Li1-xCoO2+LixC6=LiCoO2+ C6(x<1)。下列关于该电池的说法不正确的是( ) A.放电时,Li+在电解质中由负极向正极迁移 B.放电时,负极的电极反应式为LixC6-xe-= xLi++ C6 C.充电时,若转移1mole-,石墨C6电极将增重7xg D.充电时,阳极的电极反应式为LiCoO2-xe-=Li1-xCoO2+Li+ 【答案】C 【解析】 放电时,阳离子向正极移动,A正确;放电时,负极失去电子,B正确;充电时,若转移1mol电子,则石墨电极上溶解1/xmol C6,电极质量减少,C错误;充电时阳极失去电子,为原电池的正极的逆反应,D正确。 25 5.【2016·新课标Ⅱ卷】Mg-AgCl电池是一种以海水为电解质溶液的水激活电池。下列叙述错误的是( ) A.负极反应式为Mg-2e-=Mg2+ B.正极反应式为Ag++e-=Ag C.电池放电时Cl-由正极向负极迁移 D.负极会发生副反应Mg+2H2O=Mg(OH)2+H2↑ 【答案】B 【解析】根据题意,电池总反应式为:Mg+2AgCl=MgCl2+2Ag,正极反应为:2AgCl+2e-= 2Cl-+ 2Ag,负极反应为:Mg-2e=Mg2+,A正确,B错误;对原电池来说,阴离子由正极移向负极,C正确;由于 镁是活泼金属,则负极会发生副反应Mg+2H2O=Mg(OH)2+H2↑,D正确。 6.【2016·新课标Ⅲ卷】锌–空气燃料电池可用作电动车动力电源,电池的电解质溶液为KOH溶液,反应为2Zn+O2+4OH–+2H2O===2Zn(OH)。下列说法正确的是( ) A.充电时,电解质溶液中K+向阳极移动 B.充电时,电解质溶液中逐渐减小 C.放电时,负极反应为:Zn+4OH–-2e–===Zn(OH) D.放电时,电路中通过2mol电子,消耗氧气22.4L(标准状况) 【答案】C 【解析】充电时阳离子向阴极移动,A错误;放电时总反应为:2Zn+O2+4KOH+2H2O===2K2Zn(OH)4,,则充电时生成氢氧化钾,溶液中的增大,B错误;放电时,锌在负极失去电子,C正确;标准状况下22.4L氧气的物质的量为1mol,对应转移4mol电子,D错误。 7.【2016·浙江卷】金属(M)–空气电池(如图)具有原料易得、能量密度高等优点,有望成为新能源汽车和移动设备的电源。该类电池放电的总反应方程式为:4M+nO2+2nH2O=4M(OH) n。已知:电池的“理论比能量”指单位质量的电极材料理论上能释放出的最大电能。下列说法不正确的是( ) 25 A.采用多孔电极的目的是提高电极与电解质溶液的接触面积,并有利于氧气扩散至电极表面 B.比较Mg、Al、Zn三种金属–空气电池,Al–空气电池的理论比能量最高 C.M–空气电池放电过程的正极反应式:4Mn++nO2+2nH2O+4ne–=4M(OH)n D.在M–空气电池中,为防止负极区沉积Mg(OH)2,宜采用中性电解质及阳离子交换膜 【答案】C 【解析】多孔电极可以增加氧气与电极的接触,使氧气充分反应,A正确;24克镁失去2摩尔电子,27克铝失去3摩尔电子,65克锌失去2摩尔电子,所以铝-空气电池的理论比能量最高,B正确;根据题给放电的总反应4M+nO2+2nH2O=4M(OH)n,氧气在正极得电子,由于有阴离子交换膜,正极反应式为O2+2H2O+4e–=4OH−,C错误;负极是金属失去电子生成金属阳离子,因为镁离子或铝离子或锌离子都可以 和氢氧根离子反应生成氢氧化物沉淀,说明应采用中性电解质或阳离子交换膜,防止正极产生的氢氧根到 负极区反应,D正确。 8.【2016·浙江卷】(15分)催化还原CO2是解决温室效应及能源问题的重要手段之一。研究表明,在Cu/ZnO催化剂存在下,CO2和H2可发生两个平衡反应,分别生成CH3OH和CO。反应的热化学方程式如下: CO2(g)+3 H2(g) CH3OH(g)+H2O(g)ΔH1=-53.7kJ·mol-1 I CO2(g)+ H2(g) CO(g)+H2O(g)ΔH2 II 某实验室控制CO2和H2初始投料比为1:2.2,经过相同反应时间测得如下实验数据: 【备注】Cat.1:Cu/ZnO纳米棒;Cat.2:Cu/ZnO纳米片;甲醇选择性:转化的CO2中生成甲醛的百分比 25 已知:①CO和H2的标准燃烧热分别为-283.0kJ·mol-1和-285.8kJ·mol-1 ②H2O(l) H2O(g) ΔH3=44.0kJ·mol-1 请回答(不考虑温度对ΔH的影响): (5)研究证实,CO2也可在酸性水溶液中通过电解生成甲醇,则生成甲醇的反应发生在 极,该电极反应式是 。 【答案】 (5)阴 CO2+6H++6e-==CH3OH+H2O 【解析】(5)二氧化碳变甲醇,碳元素的化合价降低,得到电子,说明其在阴极反应,其电极反应为: CO2+6H++6e-==CH3OH+H2O 9.【2016·天津卷】(14分)氢能是发展中的新能源,它的利用包括氢的制备、储存和应用三个环节。回答下列问题: (1)与汽油相比,氢气作为燃料的优点是_________(至少答出两点)。但是氢气直接燃烧的能量转换率远低于燃料电池,写出碱性氢氧燃料电池的负极反应式:____________。 (5)化工生产的副产氢也是氢气的来源。电解法制取有广泛用途的Na2FeO4,同时获得氢气:Fe+2H2O+2OH−FeO42−+3H2↑,工作原理如图1所示。装置通电后,铁电极附近生成紫红色的FeO42−,镍电极有气泡产生。若氢氧化钠溶液浓度过高,铁电极区会产生红褐色物质。已知:Na2FeO4只在强碱性条件下稳定,易被H2还原。 ①电解一段时间后,c(OH−)降低的区域在_______(填“阴极室”或“阳极室”)。 ②电解过程中,须将阴极产生的气体及时排出,其原因是_______。 ③c( Na2FeO4)随初始c(NaOH)的变化如图2,任选M、N两点中的一点,分析c(Na2FeO4)低于最高值的原因:_____________。 【答案】 (1)污染小;可再生;来源广;资源丰富;燃烧热值高;H2+2OH--2e-=2H2O (5)①阳极室 25 ②防止Na2FeO4与H2反应使产率降低 ③M点:c(OH-)低,Na2FeO4稳定性差,且反应慢(或N点:c(OH-)过高,铁电极上有氢氧化铁生成,使Na2FeO4产率降低)。 【解析】(1)与汽油相比,氢气作为燃料的优点有污染小;可再生;来源广;资源丰富;燃烧热值高等,碱性氢氧燃料电池的负极反应式为H2+2OH--2e-=2H2O,故答案为:污染小;可再生;来源广;资源丰富;燃烧热值高;H2+2OH--2e-=2H2O (2)①H2(g)+A(l)=B(l) ΔH1,②O2(g)+B(l)=A(l)+H2O2(l) ΔH2,两反应的ΔS<0,根据ΔG=ΔH−TΔS,因为均为两反应自发反应,因此ΔH均小于0,将①+②得:H2(g)+ O2(g)= H2O2(l)的ΔH=ΔH1+ΔH1<0,故答案为:<; (3)MHx(s)+yH2(g)MHx+2y(s) ΔH<0,该反应属于气体的物质的量发生变化的反应。a.平衡时气体的物质的量不变,压强不变,正确;b.该反应为可逆反应,吸收y mol H2需要大于1 mol 的MHx,错误;c.降低温度,平衡向正反应方向移动,平衡常数增大,正确;d.向容器内通入少量氢气,相当于增大压强,平衡正向移动,v(放氢)<v(吸氢),错误;故选ac; (4)利用太阳能直接分解水制氢,是将光能转化为化学能,故答案为:光能转化为化学能; (5)①根据题意镍电极有气泡产生是氢离子放电生成氢气,铁电极发生氧化反应,溶液中的氢氧根离子减少,因此电解一段时间后,c(OH−)降低的区域在阳极室,故答案为:阳极室; ②氢气具有还原性,根据题意Na2FeO4只在强碱性条件下稳定,易被H2还原。电解过程中,须将阴极产生的气体及时排出,防止Na2FeO4与H2反应使产率降低,故答案为:防止Na2FeO4与H2反应使产率降低; ③根据题意Na2FeO4只在强碱性条件下稳定,在M点,c(OH-)低,Na2FeO4稳定性差,且反应慢,在N点:c(OH-)过高,铁电极上有氢氧化铁生成,使Na2FeO4产率降低,故答案为:M点:c(OH-)低,Na2FeO4稳定性差,且反应慢(或N点:c(OH-)过高,铁电极上有氢氧化铁生成,使Na2FeO4产率降低)。 25查看更多