- 2021-05-08 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级下册数学教案 3-1 第1课时 平面直角坐标系 湘教版
第3章 图形与坐标 3.1 平面直角坐标系 第1课时 平面直角坐标系 1.理解有序数对的意义,能用有序数对表示实际生活中物体的位置; 2.理解平面直角坐标系的相关概念; 3.在给定的平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置;(重点) 4.理解每个象限及坐标轴上的点的特征.(难点) 一、情境导入 我们已经学过了数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图. 那么,如何确定平面内点的位置呢? 二、合作探究 探究点一:有序数对 如图是某教室学生座位的平面图: (1)请说出王明和陈帅的座位位置; (2)若用(3,2)表示第3排第2列的位置,那么(5,5)表示什么位置?王明和陈帅的座位位置可以怎么表示? (3)请说出(3,3)和(4,8)分别表示哪两位同学的座位位置; (4)(3,4)和(4,3)表示的位置相同吗?一般地,若a≠b,(a,b)与(b,a)表示的位置相同吗? 解析:平面上确定物体的位置有多种方法,但基本上都需要两个数据,本题可以通过排数和列数来确定位置,即先确定有序实数对的第1个数,再确定第2个数. 解:(1)王明的座位位置是第1排第2列;陈帅的座位位置是第5排第4列; (2)(5,5)表示的位置是第5排第5列;王明的位置可表示为(1,2),陈帅的位置可表示为(5,4);[来源:Z&xx&k.Com] (3)(3,3)表示张军的座位位置;(4,8)表示夏凡的座位位置; (4)(3,4)表示的位置是第3排第4列,(4,3)表示的位置是第4排第3列,它们表示的位置不相同.一般地,若a≠b,(a,b)与(b,a)表示的位置不相同.[来源:学科网] 方法总结:用有序实数对来描述物体的位置,其中“有序”是指若a≠b,a与b的前后顺序不同,描述的位置一般不同.例如题中的(3,4)和(4,3)表示不同的两个位置.“数对”是指必须由两个数才能确定某点的位置.[来源:学。科。网Z。X。X。K] 探究点二:平面直角坐标系 【类型一】 平面直角坐标系的概念 下列是平面直角坐标系的是( ) 解析:根据平面直角坐标系的定义来判断.平面直角坐标系由x轴(横轴,取向右为正方向)、y轴(纵轴,取向上为正方向)和原点O(x轴与y轴的交点)组成.A选项中没有标明x轴、y轴;B选项中x轴、y轴的正方向取错了;D选项中x轴与y轴标反了.故选C. 方法总结:识别平面直角坐标系时要紧扣定义,抓住其中的要点,与数轴的三要素相参照. 【类型二】 由点的位置写出点的坐标 已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( ) A.(2,-1) B.(1,-2)[来源:Z|xx|k.Com] C.(-2,-1) D.(1,2) 解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为-2;由点P到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).故选B. 方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P到x轴的距离”对应的是纵坐标,与“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.[来源:学科网ZXXK] 【类型三】 平面直角坐标系中由坐标描点 在如图的直角坐标系中描出下列各点: A(4,3),B(-2,3),C(-4,-1),D(2,-3). 解析:本题关键就是已知点的坐标,如何描出点的位置,以描点B(-2,3)为例,即在x轴上找到坐标-2,过-2对应的点作x轴的垂线,再在y轴上找到坐标3,过3对应的点作y轴的垂线,与前垂线的交点即为B(-2,3),同理可描出其他三个点. 解:如图所示: 方法总结:在直角坐标系中描出点P(a,b)的方法:先在x轴上找到数a对应的点M,在y轴上找到数b对应的点N,再分别由点M、点N作x轴、y轴的垂线,两垂线的交点就是所要描出的点P.已知坐标平面上的点的坐标,描出对应点的位置,反过来在坐标平面上给一点,找出它对应的坐标,熟练掌握平面直角坐标系是解题的关键. 探究点三:点的坐标的符号特征 【类型一】 已知点的坐标确定象限 设点M(a,b)为平面直角坐标系内的点. (1)当a>0,b<0时,点M位于第几象限? (2)当ab>0时,点M位于第几象限? (3)当a为任意有理数,且b<0时,点M位于第几象限? 解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)b<0,则点M在x轴下方. 解:(1)点M在第四象限; (2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0); (3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上. 方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点,(-,+)表示第二象限内的点,(-,-)表示第三象限内的点,(+,-)表示第四象限内的点. 【类型二】 根据点的坐标求字母的取值范围 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________. 解析:根据第一象限内点的坐标符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组解得m>2.故答案为m>2. 方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围. 三、板书设计 平面直角坐标系 定义:原点,坐标轴; 点的坐标: 描点. 就学生掌握的情况来看,学生对于给出的数据去找对应的点或物体相对容易一些,而给出物体或点来确定它的位置要困难一些,并且大多数学生把到x轴的距离认为与横坐标有关,到y轴的距离认为与纵坐标有关,这是错误的,在今后的教学中,要通过实例让学生不断强化,逐步提高.查看更多