2013年普通高等学校招生全国统一考试 文数(北京卷)(含答案)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2013年普通高等学校招生全国统一考试 文数(北京卷)(含答案)

绝密★启用并使用完毕 ‎2013年普通高等学校招生全国统一考试(北京卷)‎ 数学(文)‎ 本试卷共5页,150分.考试时长120分钟。考生务必将答案答在答题卡上,在试卷上答无效。考试结束后,将本卷和答题卡一并交回。‎ ‎ 第一部分 (选择题 共40分)‎ 一、 选择题共8小题。每小题5分,共40分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。‎ ‎(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )‎ ‎ (A){0} (B){-1,,0} (C){0,1} (D){-1,,0,1}‎ ‎(2)设a,b,c∈R,且abc (B)< (C)a2>b2 (D)a3>b3‎ ‎(3)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是 ‎(A)y= (B)y=e-3 ‎ ‎(C)y=x2+1 (D)y=lg∣x∣‎ ‎(4)在复平面内,复数i(2-i)对应的点位于 ‎(A)第一象限 (B)第二象限 ‎(C)第三象限 (D)第四象限 ‎(5)在△ABC中,a=3,b=5,sinA= ,则sinB ‎(A) (B) ‎ ‎(C) (D)1‎ ‎(6)执行如图所示的程序框图,输出的S值为 ‎ ‎ ‎ (A)1‎ ‎ (B) ‎ ‎ (C)‎ ‎ (D)‎ ‎(7)双曲线x²-=1的离心率大于的充分必要条件是 ‎ (A)m> (B)m≥1‎ ‎ (C)m大于1 (D)m>2‎ ‎(8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有 ‎(A)3个 (B)4个 ‎(C)5个 (D)6个 ‎ ‎ 第二部分(非选择题 共110分)‎ 二、填空题共6题,每小题5分,共30分。‎ ‎(9)若抛物线y2=2px的焦点坐标为(1,0)则p=____;准线方程为_____‎ ‎(10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.‎ ‎(11)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项sn=_____.‎ ‎(12)设D为不等式组,表示的平面区域,区域D上的点与点(L,0)之间的距离的最小值为___________.‎ ‎(13)函数f(x)=的值域为_________.‎ ‎(14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足AP =λAB+μAC (1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.‎ 三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。‎ ‎(15)(本小题共13分)‎ 已知函数f(x)=(2cos2x-1)sin2x=cos4x.‎ (1) 求f(x)的最小正周期及最大值 (2) ‎(2)若α∈(,π)且f(α)=,求α的值 ‎(16)(本小题共13分)‎ 下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天。‎ ‎(Ⅰ)求此人到达当日空气质量优良的概率 ‎(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率。‎ ‎(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)‎ ‎17.(本小题共14分)‎ 如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:‎ ‎(Ⅰ)PA⊥底面ABCD;‎ ‎(Ⅱ)BE∥平面PAD ‎(Ⅲ)平面BEF⊥平面PCD. ‎ ‎ ‎ ‎(18)(本小题共13分)‎ ‎ 已知函数f(x)=x2+xsin x+cos x.‎ ‎(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值。‎ ‎(Ⅱ)若曲线y=f(x)与直线y=b 有两个不同的交点,求b的取值范围。‎ ‎(19)(本小题共14分)‎ ‎ 直线y=kx+m(m≠0)与椭圆W:+y2相交与A,C两点,O为坐标原电。‎ ‎(Ⅰ)当点B的左边为(0,1),且四边形OABC为菱形时,求AC的长;‎ ‎(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形。‎ ‎(20)(本小题共13分)‎ 给定数列a1,a2,…,an。对i-1,2,…n-l,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,…,an的最小值记为Bi,di=ni-Bi.‎ ‎(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值.‎ ‎(Ⅱ)设a1,a2,…,an(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…dn-1是等比数列。‎ ‎(Ⅲ)设d1,d2,…dn-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,an-1是等差数列。‎
查看更多

相关文章

您可能关注的文档