高三数学总复习学案6
学案6 函数的奇偶性与周期性
导学目标: 1.了解函数奇偶性、周期性的含义.2.会判断奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.
自主梳理
1.函数奇偶性的定义
如果对于函数f(x)定义域内任意一个x,都有______________,则称f(x)为奇函数;如果对于函数f(x)定义域内任意一个x,都有____________,则称f(x)为偶函数.
2.奇偶函数的性质
(1)f(x)为奇函数⇔f(-x)=-f(x)⇔f(-x)+f(x)=____;
f(x)为偶函数⇔f(x)=f(-x)=f(|x|)⇔f(x)-f(-x)=____.
(2)f(x)是偶函数⇔f(x)的图象关于____轴对称;f(x)是奇函数⇔f(x)的图象关于_____ ___
对称.
(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有________的单调性.
3.函数的周期性
(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)=________,则称f(x)为________函数,其中T称作f(x)的周期.若T存在一个最小的正数,则称它为f(x)的________________.
(2)性质: ①f(x+T)=f(x)常常写作f(x+)=f(x-).
②如果T是函数y=f(x)的周期,则kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x).
③若对于函数f(x)的定义域内任一个自变量的值x都有f(x+a)=-f(x)或f(x+a)=或f(x+a)=-(a是常数且a≠0),则f(x)是以______为一个周期的周期函数.
自我检测
1.已知函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是 ( )
A.1 B.2 C.3 D.4
2.(2011·茂名月考)如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是 ( )
A.增函数且最小值是-5
B.增函数且最大值是-5
C.减函数且最大值是-5
D.减函数且最小值是-5
3.函数y=x-的图象 ( )
A.关于原点对称
B.关于直线y=-x对称
C.关于y轴对称
D.关于直线y=x对称
4.(2009·江西改编)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2 012)+f(2 011)的值为 ( )
A.-2 B.-1 C.1 D.2
5.(2011·开封模拟)设函数f(x)=为奇函数,则a=________.
探究点一 函数奇偶性的判定
例1 判断下列函数的奇偶性.
(1)f(x)=(x+1) ;(2)f(x)=x(+);
(3)f(x)=log2(x+);(4)f(x)=
变式迁移1 判断下列函数的奇偶性.
(1)f(x)=x2-x3;
(2)f(x)=+;
(3)f(x)=.
探究点二 函数单调性与奇偶性的综合应用
例2 函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式f[x(x-)]<0的解集.
变式迁移2 (2011·承德模拟)已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.
探究点三 函数性质的综合应用
例3 (2009·山东)已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0),在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.
变式迁移3 定义在R上的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)( )
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数
转化与化归思想的应用
例 (12分)函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
【答题模板】
解 (1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),
∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.[2分]
(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),
∴f(-1)=f(1)=0.[4分]
令x1=-1,x2=x有f(-x)=f(-1)+f(x),
∴f(-x)=f(x),∴f(x)为偶函数.[6分]
(3)依题设有f(4×4)=f(4)+f(4)=2,
f(16×4)=f(16)+f(4)=3,[7分]
∵f(3x+1)+f(2x-6)≤3,
即f((3x+1)(2x-6))≤f(64)[8分]
∵f(x)为偶函数,
∴f(|(3x+1)(2x-6|)≤f(64).[10分]
又∵f(x)在(0,+∞)上是增函数,f(x)的定义域为D.
∴0<|(3x+1)(2x-6)|≤64.[11分]
解上式,得3
0,从而得出0<|g(x)|≤a,解之得x的范围.
【易错点剖析】
在(3)中,由f(|(3x+1)·(2x-6)|)≤f(64)脱掉“f”的过程中,如果思维不缜密,不能及时回顾已知条件中函数的定义域中{x|x≠0},易出现0≤|(3x+1)(2x-6)|≤64,导致结果错误.
1.正确理解奇函数和偶函数的定义,必须把握好两个问题:①定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;②f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.
2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f(-x)=±f(x)⇔f(-x)±f(x)=0⇔=±1(f(x)≠0).
3.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它判断函数的奇偶性.
4.关于函数周期性常用的结论:对于函数f(x),若有f(x+a)=-f(x)或f(x+a)=或f(x+a)=-(a为常数且a≠0),则f(x)的一个周期为2a
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011·吉林模拟)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值为( )
A.- B.
C. D.-
2.(2010·银川一中高三年级第四次月考)已知定义域为{x|x≠0}的函数f(x)为偶函数,且f(x)在区间(-∞,0)上是增函数,若f(-3)=0,则<0的解集为 ( )
A.(-3,0)∪(0,3)
B.(-∞,-3)∪(0,3)
C.(-∞,-3)∪(3,+∞)
D.(-3,0)∪(3,+∞)
3.(2011·鞍山月考)已知f(x)是定义在R上的偶函数,并满足f(x+2)=-,当1≤x≤2时,f(x)=x-2,则f(6.5)等于 ( )
A.4.5 B.-4.5
C.0.5 D.-0.5
4.(2010·山东)设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于 ( )
A.3 B.1 C.-1 D.-3
5.设函数f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数,则f(-1)与f(2)大小关系是 ( )
A.f(-1)>f(2) B.f(-1)1,f(2)=,则m的取值范围是________.
8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 010)的值为________.
三、解答题(共38分)
9.(12分)(2011·汕头模拟)已知f(x)是定义在[-6,6]上的奇函数,且f(x)在[0,3]上是x的一次式,在[3,6]上是x的二次式,且当3≤x≤6时,f(x)≤f(5)=3,f(6)=2,求f(x)的表达式.
10.(12分)设函数f(x)=x2-2|x|-1(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)画出这个函数的图象;
(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(4)求函数的值域.
11.(14分)(2011·舟山调研)已知函数f(x)=x2+(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
答案 自主梳理
1.f(-x)=-f(x) f(-x)=f(x)
2.(1)0 0 (2)y 原点 (3)相反
3.(1)f(x) 周期 最小正周期 (2)③2a
自我检测
1.B [因为f(x)为偶函数,所以奇次项系数为0,即m-2=0,m=2.]
2.A [奇函数的图象关于原点对称,对称区间上有相同的单调性.]
3.A [由f(-x)=-f(x),故函数为奇函数,图象关于原点对称.]
4.C [f(-2 012)+f(2 011)=f(2 012)+f(2 011)=f(0)+f(1)=log21+log2(1+1)=1.]
5.-1
解析 ∵f(-1)=0,∴f(1)=2(a+1)=0,
∴a=-1.代入检验f(x)=是奇函数,故a=-1.
课堂活动区
例1 解题导引 判断函数奇偶性的方法.
(1)定义法:用函数奇偶性的定义判断.(先看定义域是否关于原点对称).
(2)图象法:f(x)的图象关于原点对称,则f(x)为奇函数;f(x)的图象关于y轴对称,则f(x)为偶函数.
(3)基本函数法:把f(x)变形为g(x)与h(x)的和、差、积、商的形式,通过g(x)与h(x)的奇偶性判定出f(x)的奇偶性.
解 (1)定义域要求≥0且x≠-1,
∴-10,则
f(-x)=-(-x)2-x=-(x2+x)=-f(x);
当x>0时,-x<0,则
f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x).
∴对任意x∈(-∞,0)∪(0,+∞)都有f(-x)=-f(x).
故f(x)为奇函数.
变式迁移1 解 (1)由于f(-1)=2,f(1)=0,f(-1)≠f(1),f(-1)≠-f(1),从而函数f(x)
既不是奇函数也不是偶函数.
(2)f(x)的定义域为{-1,1},关于原点对称,又f(-1)=f(1)=0,f(-1)=-f(1)=0,∴f(x)既是奇函数又是偶函数.
(3)由得,f(x)定义域为[-2,0)∪(0,2].
∴定义域关于原点对称,
又f(x)=,f(-x)=-
∴f(-x)=-f(x)
∴f(x)为奇函数.
例2 解题导引 本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.
在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.
解 ∵y=f(x)为奇函数,且在(0,+∞)上为增函数,
∴y=f(x)在(-∞,0)上单调递增,
且由f(1)=0得f(-1)=0.
若f[x(x-)]<0=f(1),
则即00)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1f(2),即f(-1)>f(2).]
6.1
解析 ∵f(x)是奇函数,且x∈R,∴f(0)=0,即a=0.又f(-1)=-f(1),∴b-1=-(1-1)=0,即b=1,因此a+b=1.
7.-11,
∴f(-1)=-f(1)<-1,∴<-1.
解得:-14,即a4,∴x1x2(x1+x2)>16,
∴a的取值范围为(-∞,16].…………………………………………………………(14分)