- 2021-04-23 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2014江苏省淮安市中考数学试卷
江苏省淮安市2014年初中毕业暨中等学校招生文化统一考试 数学试题 欢迎参加中考,相信你能成功!请先阅读以下几点注意事项: 1.试卷分为第Ⅰ卷和第Ⅱ卷两部分,共6页,全卷满分150分,考试时间120分钟. 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效. 3.答第Ⅱ卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置。答案写在试卷上或答题卡上规定的区域以外无效。 4.作图要用2B铅笔,加黑加粗,描写清楚。 5.考试结束,将本试卷和答题卡一并交回。 第Ⅰ卷(选择题 共24分) 一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2014江苏省淮安市,1,3分)-5的相反数为 A. B. 5 C. D. -5 【答案】B 2. (2014江苏省淮安市,2,3分)计算的结果为 A. B. C. D. 【答案】A 3. (2014江苏省淮安市,3,3分)地球与月球的平均距离大约为384000km。将384000用科学记数法表示应为 A. B. C. D. 【答案】C 4. (2014江苏省淮安市,4,3分)小华同学某体育项目7次测试成绩如下(单位:分)9,7,10,8,10,9,10,这组数据的中位数和众数分别为 A.8,10 B.10,9 C.8,9 D.9,10 【答案】D 5. (2014江苏省淮安市,5,3分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为 A. 5 B.6 C.7 D.25 【答案】A 6. (2014江苏省淮安市,6,3分)若在实数范围内有意义,则x的取值范围是 A. B. C. D. 【答案】D 7.(2014江苏省淮安市,7,3分)如图,直角三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为 A. 56° B. 44° C. 34° D. 28° 【答案】B 8. (2014江苏省淮安市,8,3分)如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为 A. B.3 C. D.6 【答案】B 第Ⅱ卷(非选择题 共126分) 二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上) 9. jscm(2014省市,9,分)分解因式: ▲ . 【答案】 10. j(2014江苏省淮安市,10,3分)不等式组的解集为 ▲ . 【答案】 11.(2014江苏省淮安市,11,3分)若一个三角形三边长分别为2,3,x,则x的值可以为 ▲ .(只需填一个数) 【答案】2 12. (2014江苏省淮安市,12,3分)一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为 ▲ . 【答案】 13. (2014江苏省淮安市,13,3分)如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是 ▲ .(只填写一个条件,不使用图形以外的字母和线段) 【答案】BC∥AD 14. (2014江苏省淮安市,14,3分)若,则代数式的值为 ▲ . 【答案】5 15. (2014省市,15,分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是▲ . 【答案】P 16. (2014江苏省淮安市,16,3分)将二次函数的图象沿y轴向上平移2个单位,所得图象对应的函数表达式为 ▲ . 【答案】 17. jscm(2014江苏省淮安市,17,3分)如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°, 则∠ADC的度数为 ▲ . 【答案】130° 18.jscm(2014江苏省淮安市,18,3分)如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,在顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,……,按此方法得到的四边形A8B8C8D8的周长为 ▲ . 【答案】 三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19. (2014江苏省淮安市,19,12分)计算: (1) 【答案】解:原式= =8 (2) 【答案】解:原式= = = = 20. (2014江苏省淮安市,20,6分)解方程组: 【答案】解: (1)+(2)得: 3x=9 x=3 把x=3代入(2)中,得y=-1 方程组的解为 21.(2014江苏省淮安市,21,8分)如图,在三角形ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形. 【答案】解:由折叠可知AE=ED,AF=DF ∴∠1=∠2, ∠3=∠4 又 ∵AD平分∠BAC ∴∠1=∠3 ∴∠1=∠2=∠3=∠4 ∴AE∥DF,AF∥ED ∴四边形AEDF为平行四边形 ∴四边形AEDF为菱形 22. jscm(2014江苏省淮安市,22,8分)班级准备召开主题班会,现从由3名男生和2名女生所组成的班委中,随机选取两人担任主持人,求两名主持人恰为一男一女的概率.(请用“画树状图”或“列表”等方法写出过程) 【答案】解: 男1 男2 男3 女1 女2 男1 男1男2 男1男3 男1女1 男1女2 男2 男2男1 男2男3 男2女1 男2女2 男3 男3男1 男3男2 男3女1 男3女2 女1 女1男1 女1男2 女1男3 女1女2 女2 女2男1 女2男2 女2男3 女2女1 P(一男一女)= 答:两名主持人一男一女的概率为。 23. (2014江苏省淮安市,23,8分)某公司为了了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计图表. 解答下列问题: (1)表中a= ▲ ,b= ▲ ,c= ▲ ; (2)请补全频数分布直方图; (3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数. 【答案】解:(1)0.05, 14, 0.35 (2) (3) 24. (2014江苏省淮安市,24,8分)为了一棵倾斜的古杉树AB进行保护,需测量其长度,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数) 参考数据: 【答案】解:作BD⊥AC于D 由∠ACB=45°知,△BDC为等腰直角三角形 BD=CD 设CD=x,则BD=x,AD=(54-x)m 在Rt△ABD中, 即 解得x=37.6, 所以 x=41 答:这棵古杉树AB=41m. 25. (2014江苏省淮安市,25,8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米. (1)求y关于x的函数关系式; (2)当x为何值时,围成的养鸡场面积为60平方米? (3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由. 【答案】解:() (2)当y=60时,,解得 所以当x=10或6时,围成的养鸡场的面积为60平方米。 (3) 当y=70时,,整理得:, 由于 所以此方程无解,不能围成面积为70的养鸡场. 26. (2014江苏省淮安市,26,10分)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且. (1)求∠ACB的度数. (2)若AC=8,求△ABF的面积. 【答案】解:连接CD 则CF=CD ∵AB是⊙C的切线 ∴CD⊥AB 在Rt△ACD中 ∵ ∴ ∴∠A=30° ∵AC=BC ∴∠ABC=∠A=30° ∴∠ACB=120° (2)由(1)知:∠BCD=∠BCF=60° 显然△BCD≌△BCF(SAS) 得∠BFC=90°, 又∵AC=8,得OD=4,则AF=12 所以BF= 27. (2014江苏省淮安市,27,12分)如图,点A(1,6)和点M(m,n)都在反比例函数的图像上. (1)k的值为 ▲ . (2)当m=3时,求直线AM的解析式; (3)当时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由. 【答案】解:(1) 点A(1,6)在反比例函数的图像上 所以 (2) 当m=3时,则n=2,所以M(3,2) 设直线AM的解析式为 则 解得 所以直线AM的解析式为 (3)延长BA、PM相交于N 则∠N=90° ∵A(1,6),M(m,n) ∴B(0,6),P(m,0),N(m,6) ∴BN=m,PN=6,AN=m-1,MN=6-n ∴ ∴ ∴∠1=∠2 ∴AM∥BP 28. jscm(2014江苏省淮安市,28,14分)如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0)动点P从点O出发,以每秒2个单位长度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,P、Q两点同时运动,相遇时停止。在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR,设运动时间为t秒. (1)当t= ▲ 时,△PQR的边QR经过点B; (2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式; (3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值. 【答案】解: (1)由题意可知:AB=AQ=3,QD=1,则t=1 (2)(Ⅰ)作PF⊥BC于F,则PF=EF=OC=3 OP=2t,则 (Ⅱ) = = (Ⅲ) = = (3)查看更多