- 2021-04-20 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学试题分类汇编7——统计
2011年高考数学试题分类汇编7——统计 七、统计 一、选择题 1.(四川理1)有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 A. B. C. D. 【答案】B 【解析】从到共有22,所以。 2.(陕西理9)设(,),(,),…,(,)是变量和的个样本点, 直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以 下结论中正确的是 A.和的相关系数为直线的斜率 B.和的相关系数在0到1之间 C.当为偶数时,分布在两侧的样本点的个数一定相同 D.直线过点 【答案】D 3.(山东理7)某产品的广告费用x与销售额y的统计数据如下表 广告费用x(万元) 4 2 3 5 销售额y(万元) 49 26 39 54 根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为 A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元 【答案】B 4.(江西理6)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),表示变量Y与X之间的线性相关系数,表示变量V与U之间的线性相关系数,则 A. B. C. D. 【答案】C 5.(湖南理4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110 由算得, 第 4 页 共 4 页 . 0.050 0.010 0.001 3.841 6.635 10.828 参照附表,得到的正确结论是 A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关” 【答案】C 二、填空题 6.(天津理9)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________ 【答案】12 7.(辽宁理14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. 【答案】0.254 8.(江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差 【答案】3.2 9.(广东理13)某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm. 【答案】185 三、解答题 10.(北京理17) 以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。 (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。 (注:方差,其中为,,…… 的平均数) 解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 第 4 页 共 4 页 所以平均数为 方差为 (Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P(Y=17)= 同理可得 所以随机变量Y的分布列为: Y 17 18 19 20 21 P EY=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×+18×+19×+20×+21× =19 11.(辽宁理19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙. (I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望; (II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表: 品种甲 403 397 390 404 388 400 412 406 品种乙 419 403 412 418 408 423 400 413 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种? 附:样本数据的的样本方差,其中为样本平均数. 解: (I)X可能的取值为0,1,2,3,4,且 第 4 页 共 4 页 即X的分布列为 ………………4分 X的数学期望为 ………………6分 (II)品种甲的每公顷产量的样本平均数和样本方差分别为: ………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为: ………………10分 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 第 4 页 共 4 页查看更多