- 2021-04-16 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考文科数学公式大全
一、函数、导数 1、函数的单调性 (1)设那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,若,则为增函数;若,则为减函数. 2、函数的奇偶性 对于定义域内任意的,都有,则是偶函数; 对于定义域内任意的,都有,则是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。 3、函数在点处的导数的几何意义 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是. 4、几种常见函数的导数 ①;②; ③;④; ⑤;⑥; ⑦;⑧ 5、导数的运算法则 (1). (2). (3). 6、会用导数求单调区间、极值、最值 7、求函数的极值的方法是:解方程.当时: (1) 如果在附近的左侧,右侧,那么是极大值; (2) 如果在附近的左侧,右侧,那么是极小值. 二、三角函数、三角变换、解三角形、平面向量 8、同角三角函数的基本关系式 ,=. 9、正弦、余弦的诱导公式 的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号; 的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。 10、和角与差角公式 ; ; . 11、二倍角公式 . . . 公式变形: 12、三角函数的周期 函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期. 13、 函数的周期、最值、单调区间、图象变换 14、辅助角公式 其中 15、正弦定理 . 16、余弦定理 ; ; . 17、三角形面积公式 . 19、与的数量积(或内积) 20、平面向量的坐标运算 (1)设A,B,则. (2)设=,=,则=. (3)设=,则 21、两向量的夹角公式 设=,=,且,则 22、向量的平行与垂直 . . 三、数列 23、数列的通项公式与前n项的和的关系 ( 数列的前n项的和为). 24、等差数列的通项公式 ; 25、等差数列其前n项和公式为 . 26、等比数列的通项公式 ; 27、等比数列前n项的和公式为 或 . 五、解析几何 28、直线的五种方程 (1)点斜式 (直线过点,且斜率为). (2)斜截式 (b为直线在y轴上的截距). (3)两点式 ()(、 ()). (4)截距式 (分别为直线的横、纵截距,) (5)一般式 (其中A、B不同时为0). 29、两条直线的平行和垂直 若, ①; ②. 30、平面两点间的距离公式 (A,B). 31、点到直线的距离 (点,直线:). 32、直线与圆的位置关系 直线与圆的位置关系有三种: ; ; . 弦长= 其中. 六、立体几何 33、证明直线与直线平行的方法 (1)三角形中位线 (2)平行四边形(一组对边平行且相等) 34、证明直线与平面平行的方法 (1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行) (2)先证面面平行 35、证明平面与平面平行的方法 平面与平面平行的判定定理(一个平面内的两条相交直线分别与另一平面平行) 36、证明直线与直线垂直的方法 转化为证明直线与平面垂直 37、证明直线与平面垂直的方法 (1)直线与平面垂直的判定定理(直线与平面内两条相交直线垂直) (2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面) 38、证明平面与平面垂直的方法 平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直) 39、柱体、椎体、球体的侧面积、表面积、体积计算公式 圆柱侧面积=,表面积= 圆椎侧面积=,表面积= (是柱体的底面积、是柱体的高). (是锥体的底面积、是锥体的高). 球的半径是,则其体积,其表面积. 40、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算 41、点到平面距离的计算(定义法、等体积法) 42、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。 正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。 七、概率统计 43、平均数、方差、标准差的计算 平均数: 方差: 标准差: 八、复数 44、复数的除法运算 . 45、复数的模==.查看更多