- 2021-04-16 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2013届人教A版理科数学课时试题及解析(43)立体几何中的向量方法(二)——空间角与距离求解
课时作业(四十三) [第43讲 立体几何中的向量方法(二)——空间角与距离求解] [时间:45分钟 分值:100分] 1.点M在z轴上,它与经过坐标原点且方向向量为s=(1,-1,1)的直线l的距离为,则点M的坐标是( ) A.(0,0,±2) B.(0,0,±3) C.(0,0,±) D.(0,0,±1) 2.若a=(1,2,1),b=(-2,0,1)分别是直线l1,l2的方向向量,则l1,l2的位置关系是( ) A.平行 B.异面 C.相交 D.相交或异面 3.两平行平面α,β分别经过坐标原点O和点A(2,1,1),且两平面的一个法向量n=(-1,0,1),则两平面间的距离是( ) A. B. C. D.3 4.方向向量为s=(1,1,1)的直线l经过点A(1,0,0),则坐标原点O(0,0,0)到该直线的距离是( ) A. B. C. D. 5.如图K43-1,长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为1,则异面直线AD1和C1D所成角的余弦值是( ) 图K43-1 A. B.- C. D. 6.在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB和CD成60°角(如图K43-2),则B、D间的距离为( ) 图K43-2 A.1 B.2 C. D.2或 7.三棱锥的三条侧棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为( ) A. B.2 C. D. 8.在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为( ) A. B. C. D. 图K43-3 9.如图K43-3,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,点E是AB上一点,当二面角P-EC-D的平面角为时,AE=( ) A.1 B. C.2- D.2- 10.已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,E为OC的中点,且OA=1,OB=OC=2,则平面EAB与平面ABC夹角的余弦值是________. 11.如图K43-4,已知四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为a的正方形,侧棱AA1长为b,且AA1与A1B1,A1D1的夹角都是60°,则AC1的长等于________. 图K43-4 图K43-5 12.如图K43-5,AO⊥平面α,BC⊥OB,BC与平面α的夹角为30°,AO=BO=BC=a,则AC=________. 13.如图K43-6,在空间直角坐标系中有棱长为a的正方体ABCD-A1B1C1D1,点M是线段DC1上的动点,则点M到直线AD1距离的最小值为________. 图K43-6 14.(10分)如图K43-7,放置在水平面上的组合体由直三棱柱ABC-A1B1C1与正三棱锥B-ACD组成,其中,AB⊥BC.它的正视图、俯视图、侧视图的面积分别为2+1,2+1,1. (1)求直线CA1与平面ACD所成角的正弦值; (2)在线段AC1上是否存在点P,使B1P⊥平面ACD?若存在,确定点P的位置;若不存在,说明理由. 图K43-7 15.(13分) 如图K43-8,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求直线BF和平面BCE所成角的正弦值. 图K43-8 16.(12分) 如图K43-9,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合. (1)当CF=1时,求证:EF⊥A1C; (2)设二面角C-AF-E的大小为θ,求tanθ的最小值. 图K43-9 课时作业(四十三) 【基础热身】 1.B [解析] 设M(0,0,z),直线的一个单位方向向量s0=,故点M到直线的距离d===,解得z=±3. 2.D [解析] 根据共线向量定理,显然a,b不平行,所以l1,l2的位置关系是相交或异面. 3.B [解析] 两平面的一个单位法向量n0=,故两平面间的距离d=|·n0|=. 4.D [解析] 直线l的一个单位法向量s0=,向量=(1,0,0),故点O到直线l的距离为 d===. 【能力提升】 5.C [解析] 建立如图所示的空间直角坐标系.则A(2,0,0),D(0,0,0),D1(0,0,1),C1(0,2,1),1=(-2,0,1),=(0,2,1),故异面直线AD1和C1D所成角的余弦值为|cos〈1,1〉|==. 6.D [解析] ∵∠ACD=90°,∴·=0. 同理·=0, ∵AB和CD成60°角,∴〈,〉=60°或120°. ∵=++, ∴2=2+2+2+2·+2·+2· =2+2+2+2· =3+2×1×1×cos〈,〉 = ∴||=2或,即B、D间的距离为2或,故选D. 7.C [解析] 设三棱锥为P-ABC,且PA=6,PB=PC=4,以P为原点建立空间直角坐标系如图,则P(0,0,0),A(6,0,0),B(0,4,0),C(0,0,4),=(6,0,0),=(-6,4,0),=(-6 ,0,4),设面ABC的一个法向量为n=(x,y,z),则n⊥,n⊥, 所以⇒y=z=x,所以可选面ABC的一个法向量为n=(2,3,3), 所以P到面ABC的距离d=|||cos〈,n〉|===,选C. 8.D [解析] 如图,如果过点G直接向平面D1EF作垂线,垂足为H,如果我们能求出向量,那么||就是点G到平面D1EF的距离.在正方体中,建立空间直角坐标系非常方便,因此用坐标的方法,解决这个问题. 如图,以射线DA,DC,DD1分别为x,y,z轴的正方向建立空间直角坐标系,则G(1,λ,1),E,=,F,=(0,1,0),D1(0,0,1),1=.过点G向平面D1EF作垂线,垂足为H,由于点H在平面D1EF内,故存在实数x,y使=+x+y1=,由于GH⊥EF,GH⊥ED1, 所以 解得故=,所以||=,即点G到平面D1EF的距离是. 9.D [解析] 以D为原点,射线DA,DC,DP为x,y,z轴正方向建立空间直角坐标系,如图, 设E(1,y0,0)(0≤y0≤2),则=(-1,2-y0,0), 设平面PEC的法向量为n1=(x,y,z), ∴⇒⇒x∶y∶z=(2-y0)∶1∶2, 记n1=(2-y0,1,2), 而平面ECD的法向量n2=(0,0,1),则二面角P-EC-D的平面角θ满足cosθ=|cos〈n1,n2〉|=, ∴cosθ===⇒y0=2-. ∴当AE=2-时,二面角P-EC-D的平面角为. 10. [解析] 以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0). 设平面ABC的法向量为n1=(x,y,z),则由n1⊥知n1·=2x-z=0,由n1⊥知n1·=2y-z=0,取n1=(1,1,2). 设平面EAB的法向量为n=(x,y,z),则由n⊥知n·=2x-z=0,由n⊥知n·=2x-y=0,取n=(1,2,2). 则cos〈n,n1〉===, 所以平面EAB与平面ABC夹角的余弦值为. 11. [解析] 由已知〈1,〉=〈1,〉=120°,〈,〉=90°. |1|2=|1++|2=|1|2+||2+||2+21·+2·+21· =b2+a2+a2-ab-ab=2a2+b2-2ab,故|1|=. 12.a [解析] =++, 其中〈,〉=〈,〉=90°,〈,〉=120°, 故||2=|++|2=||2+||2+||2+2·+2·+2· =3a2+2a2cos120°=2a2,故||=a,即AC=a. 13.a [解析] 设M(0,m,m)(0≤m≤a),=(-a,0,a),直线AD1的一个单位方向向量s0=,由=(0,-m,a-m),故点M到直线AD1的距离d===,根式内的二次函数当m=-=时取最小值2-a×+a2=a2,故d的最小值为a. 14.[解答] 由已知可得AB⊥平面BB1C1C,由于三棱锥B-ACD是正三棱锥,所以CD⊂平面BB1C1C,D,B,B1三点共线,AB=BC=BD. 设AB=a,BB1=b.则其正视图和俯视图的面积都是ab+a2,侧视图的面积是a2, 根据已知解得a=,b=2.以点B为坐标原点,射线BC,BB1,BA分别为x,y,z轴的正方向建立空间直角坐标系,如图,则 A(0,0,),C(,0,0),D(0,-,0),B1(0,2,0),C1(,2,0),A1(0,2,). (1)由于三棱锥B-ACD是正三棱锥,该三棱锥的重心G,则BG⊥平面ACD,故可取向量n=(1,-1,1)为平面ACD的一个法向量,=(-,2,),故可取v=(1,-,-1)为直线CA1的一个方向向量.设直线CA1与平面ACD所成角为θ,则 sinθ=|cos〈n,v〉|===. (2)设=m=(m,2m,-m),则=+=(m,2m-2,-m), 如果B1P⊥平面ACD,则∥n,即(m,2m-2,-m)=(λ,-λ,λ),由此得方程组 由①③得m=,λ=,代入②则-1=-,矛盾,这说明不存在满足题目要求的点P. 15.[解答] 方法一: (1)证法一:取CE的中点G,连接FG、BG. ∵F为CD的中点,∴GF∥DE且GF=DE, ∵AB⊥平面ACD,DE⊥平面ACD, ∴AB∥DE,∴GF∥AB. 又AB=DE,∴GF=AB.又DE=2AB, ∴四边形GFAB为平行四边形,则AF∥BG. ∵AF⊄平面BCE,BG⊂平面BCE, ∴AF∥平面BCE. 证法二:取DE的中点M,连接AM、FM, ∵F为CD的中点,∴FM∥CE. ∵AB⊥平面ACD,DE⊥平面ACD,∴DE∥AB. 又AB=DE=ME, ∴四边形ABEM为平行四边形,则AM∥BE. ∵FM、AM⊄平面BCE,CE、BE⊂平面BCE, ∴FM∥平面BCE,AM∥平面BCE. 又FM∩AM=M,∴平面AFM∥平面BCE. ∵AF⊂平面AFM, ∴AF∥平面BCE. (2)证明:∵△ACD为等边三角形,F为CD的中点, ∴AF⊥CD. ∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF. 又CD∩DE=D,故AF⊥平面CDE. ∵BG∥AF,∴BG⊥平面CDE. ∵BG⊂平面BCE, ∴平面BCE⊥平面CDE. (3)在平面CDE内,过F作FH⊥CE于H,连接BH, ∵平面BCE⊥平面CDE,∴FH⊥平面BCE. ∴∠FBH为BF和平面BCE所成的角. 设AD=DE=2AB=2a,则FH=CFsin45°=a, BF===2a, 在Rt△FHB中,sin∠FBH==. ∴直线BF和平面BCE所成角的正弦值为. 方法二: 设AD=DE=2AB=2a,建立如图所示的坐标系A-xyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a). ∵F为CD的中点,∴F. (1)证明:=,=(a,a,a),=(2a,0,-a), ∵=(+),AF⊄平面BCE,∴AF∥平面BCE. (2)证明:∵=,=(-a,a,0),=(0,0,-2a), ∴·=0,·=0,∴⊥,⊥. ∴⊥平面CDE,又AF∥平面BCE, ∴平面BCE⊥平面CDE. (3)设平面BCE的法向量为n=(x,y,z),由n·=0,n·=0可得 x+y+z=0,2x-z=0,取n=(1,-,2). 又=,设BF和平面BCE所成的角为θ,则 sinθ===. ∴直线BF和平面BCE所成角的正弦值为. 【难点突破】 16.[解答] 解法1:过E作EN⊥AC于N,连接EF. (1)如图①,连接NF、AC1,由直棱柱的性质知,底面ABC⊥侧面A1C, 又底面ABC∩侧面A1C=AC,且EN⊂底面ABC,所以EN⊥侧面A1C,NF为EF在侧面A1C内的射影, 在Rt△CNE中,CN=CEcos60°=1, 则由==,得NF∥AC1. 又AC1⊥A1C,故NF⊥A1C, 由三垂线定理知EF⊥A1C. (2)如图②,连接AF,过N作NM⊥AF于M,连接ME, 由(1)知EN⊥侧面A1C,根据三垂线定理得EM⊥AF, 所以∠EMN是二面角C-AF-E的平面角,即∠EMN=θ, 设∠FAC=α,则0°<α≤45°. 在Rt△CNE中,NE=EC·sin60°=, 在Rt△AMN中,MN=AN·sinα=3sinα, 故tanθ==. 又0°<α≤45°,∴0查看更多
相关文章
您可能关注的文档
- 当前文档收益归属上传用户
- 下载本文档