初中数学八年级上册第十四章整式的乘法与因式分解14-2乘法公式2完全平方公式教案 人教版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

初中数学八年级上册第十四章整式的乘法与因式分解14-2乘法公式2完全平方公式教案 人教版

乘法公式 完全平方公式 ‎  教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.‎ ‎  教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.‎ ‎  教学过程:‎ ‎  一、提出问题,学生自学 ‎  问题:根据乘方的定义,我们知道:a2=a•a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?‎ ‎  (1)(p+1)2 = (p+1)(p+1) = _______;   (m+2)2 = _______;‎ ‎  (2)(p−1)2 = (p−1)(p−1) = _______;   (m−2)2 = _______;‎ ‎  学生讨论,教师归纳,得出结果:‎ ‎  (1) (p+1)2 = (p+1)(p+1) = p2+2p+1‎ ‎     (m+2)2 = (m+2)(m+2) = m2+ ‎4m+4‎ ‎  (2) (p−1)2 = (p−1)(p−1) = p2−2p+1‎ ‎     (m−2)2 = (m−2)(m−2) = m2− ‎4m+4‎ ‎  分析推广:结果中有两个数的平方和,而2p=2•p•1,‎4m=2•m•2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.‎ ‎  推广:计算(a+b)2 = __________;(a−b)2 = __________.  ‎ ‎  得到公式,分析公式 ‎  结论:     (a+b)2=a2+2ab+b2       (a−b)2=a2−2ab+b2    ‎ ‎  即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.‎ ‎  二、几何分析:‎ ‎  你能根据图(1)和图(2)的面积说明完全平方公式吗?‎ 3‎ ‎  图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2 = a2+2ab+b2,即说明(a+b)2 = a2+2ab+b2.‎ ‎  类似地可由图(2)说明(a−b)2 = a2−2ab+b2.‎ ‎  三、例题:‎ ‎  例1.应用完全平方公式计算:‎ ‎  (1)( ‎4m+n)2    (2)(y−)2    (3)(−a−b)2    (4)(b−a)2‎ ‎  解答:(1)( ‎4m+n)2 = ‎16m2‎+8mn+n2‎ ‎  (2) (y−)2 = y2−y+‎ ‎  (3) (−a−b)2 = a2+2ab+b2‎ ‎  (4) (b−a)2 = b2−2ba+a2‎ ‎  例2.运用完全平方公式计算:‎ ‎  (1)1022    (2)992‎ ‎  解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404‎ ‎  (2)992 = (100−1)2 = 10000−200+1 = 9801‎ ‎  四、添括号法则在公式里的运用 ‎  问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(a−b+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢?‎ ‎  学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c,a−(b+c) = a−b−c ‎  反过来,就得到了添括号法则:a+b+c = a+(b+c),a−b−c = a−(b+c)‎ ‎  理解法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.‎ 3‎ ‎  总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.‎ ‎  五、小结:‎ ‎  1.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.‎ ‎  2.添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.‎ 3‎
查看更多

相关文章

您可能关注的文档