全国各地中考数学压轴题汇编几何综合山东专版解析卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

全国各地中考数学压轴题汇编几何综合山东专版解析卷

‎2018年全国各地中考数学压轴题汇编(山东专版)‎ 几何综合 参考答案与试题解析 ‎ ‎ ‎1.(2018•威海)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.‎ 解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,‎ 如图,过点K作KM⊥BC于点M,‎ 设KM=x,则EM=x、MF=x,‎ ‎∴x+x=+1,‎ 解得:x=1,‎ ‎∴EK=、KF=2,‎ ‎∴BC=BE+EF+FC=EK+EF+KF=3++,‎ ‎∴BC的长为3++.‎ ‎ ‎ ‎2.(2018•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.‎ ‎(1)在图1中,画出一个与△ABC成中心对称的格点三角形;‎ ‎(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;‎ ‎(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.‎ 解:(1)如图所示,‎ ‎△DCE为所求作 ‎(2)如图所示,‎ ‎△ACD为所求作 ‎(3)如图所示 ‎△ECD为所求作 ‎ ‎ ‎3.(2018•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.‎ ‎(1)求线段AD的长度;‎ ‎(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.‎ 解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;‎ 连接CD,∵BC为直径,‎ ‎∴∠ADC=∠BDC=90°;‎ ‎∵∠A=∠A,∠ADC=∠ACB,‎ ‎∴Rt△ADC∽Rt△ACB;‎ ‎∴,∴;‎ ‎(2)当点E是AC的中点时,ED与⊙O相切;‎ 证明:连接OD,‎ ‎∵DE是Rt△ADC的中线;‎ ‎∴ED=EC,‎ ‎∴∠EDC=∠ECD;‎ ‎∵OC=OD,‎ ‎∴∠ODC=∠OCD;‎ ‎∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;‎ ‎∴ED⊥OD,‎ ‎∴ED与⊙O相切.‎ ‎ ‎ ‎4.(2018•潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.‎ ‎(1)求证:AE=BF;‎ ‎(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.‎ ‎(1)证明:∵四边形ABCD为正方形,‎ ‎∴BA=AD,∠BAD=90°,‎ ‎∵DE⊥AM于点E,BF⊥AM于点F,‎ ‎∴∠AFB=90°,∠DEA=90°,‎ ‎∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,‎ ‎∴∠ABF=∠EAD,‎ 在△ABF和△DEA中 ‎,‎ ‎∴△ABF≌△DEA(AAS),‎ ‎∴BF=AE;‎ ‎(2)解:设AE=x,则BF=x,DE=AF=2,‎ ‎∵四边形ABED的面积为24,‎ ‎∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),‎ ‎∴EF=x﹣2=4,‎ 在Rt△BEF中,BE==2,‎ ‎∴sin∠EBF===.‎ ‎ ‎ ‎5.(2018•淄博)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.‎ ‎(1)求证:PA•BD=PB•AE;‎ ‎(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.‎ 解:(1)∵DP平分∠APB,‎ ‎∴∠APE=∠BPD,‎ ‎∵AP与⊙O相切,‎ ‎∴∠BAP=∠BAC+∠EAP=90°,‎ ‎∵AB是⊙O的直径,‎ ‎∴∠ACB=∠BAC+∠B=90°,‎ ‎∴∠EAP=∠B,‎ ‎∴△PAE∽△PBD,‎ ‎∴,‎ ‎∴PA•BD=PB•AE;‎ ‎(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,‎ ‎∵DP平分∠APB,‎ AD⊥AP,DF⊥PB,‎ ‎∴AD=DF,‎ ‎∵∠EAP=∠B,‎ ‎∴∠APC=∠BAC,‎ 易证:DF∥AC,‎ ‎∴∠BDF=∠BAC,‎ 由于AE,BD(AE<BD)的长是x2﹣5x+6=0,‎ 解得:AE=2,BD=3,‎ ‎∴由(1)可知:,‎ ‎∴cos∠APC==,‎ ‎∴cos∠BDF=cos∠APC=,‎ ‎∴,‎ ‎∴DF=2,‎ ‎∴DF=AE,‎ ‎∴四边形ADFE是平行四边形,‎ ‎∵AD=AE,‎ ‎∴四边形ADFE是菱形,‎ 此时点F即为M点,‎ ‎∵cos∠BAC=cos∠APC=,‎ ‎∴sin∠BAC=,‎ ‎∴,‎ ‎∴DG=,‎ ‎∴在线段BC上是否存在一点M,使得四边形ADME是菱形 其面积为:DG•AE=2×=‎ ‎ ‎ ‎6.(2018•烟台)【问题解决】‎ 一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?‎ 小明通过观察、分析、思考,形成了如下思路:‎ 思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;‎ 思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.‎ 请参考小明的思路,任选一种写出完整的解答过程.‎ ‎【类比探究】‎ 如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.‎ 解:(1)思路一、如图1,‎ 将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,‎ ‎∴△ABP'≌△CBP,‎ ‎∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,‎ 在Rt△PBP'中,BP=BP'=2,‎ ‎∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,‎ ‎∵AP=1,‎ ‎∴AP2+PP'2=1+8=9,‎ ‎∵AP'2=32=9,‎ ‎∴AP2+PP'2=AP'2,‎ ‎∴△APP'是直角三角形,且∠APP'=90°,‎ ‎∴∠APB=∠APP'+∠BPP'=90°+45°=135°;‎ 思路二、同思路一的方法;‎ (2) 如图2,‎ 将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,‎ ‎∴△ABP'≌△CBP,‎ ‎∴∠PBP'=90°,BP'=BP=1,AP'=CP=,‎ 在Rt△PBP'中,BP=BP'=1,‎ ‎∴∠BPP'=45°,根据勾股定理得,PP'=BP=,‎ ‎∵AP=3,‎ ‎∴AP2+PP'2=9+2=11,‎ ‎∵AP'2=()2=11,‎ ‎∴AP2+PP'2=AP'2,‎ ‎∴△APP'是直角三角形,且∠APP'=90°,‎ ‎∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.‎ ‎ ‎ ‎7.(2018•东营)如图,CD是⊙O的切线,点C在直径AB的延长线上.‎ ‎(1)求证:∠CAD=∠BDC;‎ ‎(2)若BD=AD,AC=3,求CD的长.‎ ‎(1)证明:连接OD,如图所示.‎ ‎∵OB=OD,‎ ‎∴∠OBD=∠ODB.‎ ‎∵CD是⊙O的切线,OD是⊙O的半径,‎ ‎∴∠ODB+∠BDC=90°.‎ ‎∵AB是⊙O的直径,‎ ‎∴∠ADB=90°,‎ ‎∴∠OBD+∠CAD=90°,‎ ‎∴∠CAD=∠BDC.‎ ‎(2)解:∵∠C=∠C,∠CAD=∠CDB,‎ ‎∴△CDB∽△CAD,‎ ‎∴=.‎ ‎∵BD=AD,‎ ‎∴=,‎ ‎∴=,‎ 又∵AC=3,‎ ‎∴CD=2.‎ ‎ ‎ ‎8.(2018•济宁)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).‎ ‎(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);‎ ‎(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:‎ 将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.‎ 解:(1)如图点O即为所求;‎ ‎(2)设切点为C,连接OM,OC.‎ ‎∵MN是切线,‎ ‎∴OC⊥MN,‎ ‎∴CM=CN=5,‎ ‎∴OM2﹣OC2=CM2=25,‎ ‎∴S圆环=π•OM2﹣π•OC2=25π.‎ ‎ ‎ ‎9.(2018•潍坊)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.‎ ‎(1)求证:AE与⊙O相切于点A;‎ ‎(2)若AE∥BC,BC=2,AC=2,求AD的长.‎ 证明:(1)连接OA,交BC于F,则OA=OB,‎ ‎∴∠D=∠DAO,‎ ‎∵∠D=∠C,‎ ‎∴∠C=∠DAO,‎ ‎∵∠BAE=∠C,‎ ‎∴∠BAE=∠DAO,(2分)‎ ‎∵BD是⊙O的直径,‎ ‎∴∠BAD=90°,‎ 即∠DAO+∠BAO=90°,(3分)‎ ‎∴∠BAE+∠BAO=90°,即∠OAE=90°,‎ ‎∴AE⊥OA,‎ ‎∴AE与⊙O相切于点A;(4分)‎ ‎(2)∵AE∥BC,AE⊥OA,‎ ‎∴OA⊥BC,(5分)‎ ‎∴,FB=BC,‎ ‎∴AB=AC,‎ ‎∵BC=2,AC=2,‎ ‎∴BF=,AB=2,‎ 在Rt△ABF中,AF==1,‎ 在Rt△OFB中,OB2=BF2+(OB﹣AF)2,‎ ‎∴OB=4,(7分)‎ ‎∴BD=8,‎ ‎∴在Rt△ABD中,AD====2.(8分)‎ ‎ ‎ ‎10.(2018•东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:‎ 如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=‎ ‎,BO:CO=1:3,求AB的长.‎ 经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).‎ 请回答:∠ADB= 75 °,AB= 4 .‎ ‎(2)请参考以上解决思路,解决问题:‎ 如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.‎ 解:(1)∵BD∥AC,‎ ‎∴∠ADB=∠OAC=75°.‎ ‎∵∠BOD=∠COA,‎ ‎∴△BOD∽△COA,‎ ‎∴==.‎ 又∵AO=,‎ ‎∴OD=AO=,‎ ‎∴AD=AO+OD=4.‎ ‎∵∠BAD=30°,∠ADB=75°,‎ ‎∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,‎ ‎∴AB=AD=4.‎ 故答案为:75;4.‎ ‎(2)过点B作BE∥AD交AC于点E,如图所示.‎ ‎∵AC⊥AD,BE∥AD,‎ ‎∴∠DAC=∠BEA=90°.‎ ‎∵∠AOD=∠EOB,‎ ‎∴△AOD∽△EOB,‎ ‎∴==.‎ ‎∵BO:OD=1:3,‎ ‎∴==.‎ ‎∵AO=3,‎ ‎∴EO=,‎ ‎∴AE=4.‎ ‎∵∠ABC=∠ACB=75°,‎ ‎∴∠BAC=30°,AB=AC,‎ ‎∴AB=2BE.‎ 在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,‎ 解得:BE=4,‎ ‎∴AB=AC=8,AD=12.‎ 在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,‎ 解得:CD=4.‎ ‎ ‎ ‎11.(2018•枣庄)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.‎ ‎(1)求证:四边形EFDG是菱形;‎ ‎(2)探究线段EG、GF、AF之间的数量关系,并说明理由;‎ ‎(3)若AG=6,EG=2,求BE的长.‎ 解:(1)证明:∵GE∥DF,‎ ‎∴∠EGF=∠DFG.‎ ‎∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,‎ ‎∴∠DGF=∠DFG.‎ ‎∴GD=DF.‎ ‎∴DG=GE=DF=EF.‎ ‎∴四边形EFDG为菱形.‎ ‎(2)EG2=GF•AF.‎ 理由:如图1所示:连接DE,交AF于点O.‎ ‎∵四边形EFDG为菱形,‎ ‎∴GF⊥DE,OG=OF=GF.‎ ‎∵∠DOF=∠ADF=90°,∠OFD=∠DFA,‎ ‎∴△DOF∽△ADF.‎ ‎∴,即DF2=FO•AF.‎ ‎∵FO=GF,DF=EG,‎ ‎∴EG2=GF•AF.‎ ‎(3)如图2所示:过点G作GH⊥DC,垂足为H.‎ ‎∵EG2=GF•AF,AG=6,EG=2,‎ ‎∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.‎ 解得:FG=4,FG=﹣10(舍去).‎ ‎∵DF=GE=2,AF=10,‎ ‎∴AD==4.‎ ‎∵GH⊥DC,AD⊥DC,‎ ‎∴GH∥AD.‎ ‎∴△FGH∽△FAD.‎ ‎∴,即=.‎ ‎∴GH=.‎ ‎∴BE=AD﹣GH=4﹣=.‎ ‎ ‎ ‎12.(2018•烟台)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.‎ ‎(1)若∠EBD为α,请将∠CAD用含α的代数式表示;‎ ‎(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;‎ ‎(3)在(2)的条件下,若AD=,求的值.‎ 解:(1)连接CD、DE,⊙E中,∵ED=EB,‎ ‎∴∠EDB=∠EBD=α,‎ ‎∴∠CED=∠EDB+∠EBD=2α,‎ ‎⊙D中,∵DC=DE=AD,‎ ‎∴∠CAD=∠ACD,∠DCE=∠DEC=2α,‎ ‎△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,‎ ‎∴∠CAD==;‎ ‎(2)设∠MBE=x,‎ ‎∵EM=MB,‎ ‎∴∠EMB=∠MBE=x,‎ 当EF为⊙D的切线时,∠DEF=90°,‎ ‎∴∠CED+∠MEB=90°,‎ ‎∴∠CED=∠DCE=90°﹣x,‎ ‎△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,‎ ‎∴2∠CAD=180°﹣90∴=90∴,‎ ‎∴∠CAD=45°;‎ ‎(3)由(2)得:∠CAD=45°;‎ 由(1)得:∠CAD=;‎ ‎∴∠MBE=30°,‎ ‎∴∠CED=2∠MBE=60°,‎ ‎∵CD=DE,‎ ‎∴△CDE是等边三角形,‎ ‎∴CD=CE=DE=EF=AD=,‎ Rt△DEM中,∠EDM=30°,DE=,‎ ‎∴EM=1,MF=EF﹣EM=﹣1,‎ ‎△ACB中,∠NCB=45°+30°=75°,‎ ‎△CNE中,∠CEN=∠BEF=30°,‎ ‎∴∠CNE=75°,‎ ‎∴∠CNE=∠NCB=75°,‎ ‎∴EN=CE=,‎ ‎∴===2+.‎ ‎ ‎ ‎13.(2018•泰安)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.‎ ‎(1)求证:△ECG≌△GHD;‎ ‎(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.‎ ‎(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.‎ 解:(1)∵AF=FG,‎ ‎∴∠FAG=∠FGA,‎ ‎∵AG平分∠CAB,‎ ‎∴∠CAG=∠FGA,‎ ‎∴∠CAG=∠FGA,‎ ‎∴AC∥FG,‎ ‎∵DE⊥AC,‎ ‎∴FG⊥DE,‎ ‎∵FG⊥BC,‎ ‎∴DE∥BC,‎ ‎∴AC⊥BC,‎ ‎∴∠C=∠DHG=90°,∠CGE=∠GED,‎ ‎∵F是AD的中点,FG∥AE,‎ ‎∴H是ED的中点,‎ ‎∴FG是线段ED的垂直平分线,‎ ‎∴GE=GD,∠GDE=∠GED,‎ ‎∴∠CGE=∠GDE,‎ ‎∴△ECG≌△GHD;‎ ‎(2)证明:过点G作GP⊥AB于P,‎ ‎∴GC=GP,而AG=AG,‎ ‎∴△CAG≌△PAG,‎ ‎∴AC=AP,‎ 由(1)可得EG=DG,‎ ‎∴Rt△ECG≌Rt△GPD,‎ ‎∴EC=PD,‎ ‎∴AD=AP+PD=AC+EC;‎ ‎(3)四边形AEGF是菱形,‎ 证明:∵∠B=30°,‎ ‎∴∠ADE=30°,‎ ‎∴AE=AD,‎ ‎∴AE=AF=FG,‎ 由(1)得AE∥FG,‎ ‎∴四边形AECF是平行四边形,‎ ‎∴四边形AEGF是菱形.‎ ‎ ‎ ‎14.(2018•淄博)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是 MG=NG ;位置关系是 MG⊥NG .‎ ‎(2)类比思考:‎ 如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.‎ ‎(3)深入研究:‎ 如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.‎ 解:(1)连接BE,CD相交于H,‎ ‎∵△ABD和△ACE都是等腰直角三角形,‎ ‎∴AB=AD,AC=AE,∠BAD=∠CAE=90°‎ ‎∴∠CAD=∠BAE,‎ ‎∴△ACD≌△AEB(SAS),‎ ‎∴CD=BE,∠ADC=∠ABE,‎ ‎∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,‎ ‎∴∠BHD=90°,‎ ‎∴CD⊥BE,‎ ‎∵点M,G分别是BD,BC的中点,‎ ‎∴MGCD,‎ 同理:NGBE,‎ ‎∴MG=NG,MG⊥NG,‎ 故答案为:MG=NG,MG⊥NG;‎ ‎(2)连接CD,BE相交于点H,‎ 同(1)的方法得,MG=NG,MG⊥NG;‎ ‎(3)连接EB,DC,延长线相交于H,‎ 同(1)的方法得,MG=NG,‎ 同(1)的方法得,△ABE≌△ADC,‎ ‎∴∠AEB=∠ACD,‎ ‎∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,‎ ‎∴∠DHE=90°,‎ 同(1)的方法得,MG⊥NG.‎ ‎ ‎ ‎15.(2018•泰安)如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF∥AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.‎ ‎(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;‎ ‎(2)找出图中与△AGB相似的三角形,并证明;‎ ‎(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF•MH.‎ 解:(1)∠DEF=∠AEF,‎ 理由:∵EF∥AB,‎ ‎∴∠DEF=∠EBA,∠AEF=∠EAB,‎ ‎∵∠EAB=∠EBA,‎ ‎∴∠DEF=∠AEF;‎ ‎(2)△EOA∽△AGB,‎ 理由:∵四边形ABCD是菱形,‎ ‎∴AB=AD,AC⊥BD,‎ ‎∴∠GAB=∠ABE+∠ADB=2∠ABE,‎ ‎∵∠AEO=∠ABE+∠BAE=2∠ABE,‎ ‎∵∠GAB=∠AEO,∠GAB=∠AOE=90°,‎ ‎∴△EOA∽△AGB;‎ ‎(3)如图,连接DM,∵四边形ABCD是菱形,‎ 由对称性可知,BM=DM,∠ADM=∠ABM,‎ ‎∵AB∥CH,‎ ‎∴∠ABM=∠H,‎ ‎∴∠ADM=∠H,‎ ‎∵∠DMH=∠FMD,‎ ‎∴△MFD∽△MDH,‎ ‎∴,‎ ‎∴DM2=MF•MH,‎ ‎∴BM2=MF•MH.‎ ‎ ‎ ‎16.(2018•潍坊)如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.‎ ‎(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.‎ ‎①求四边形BHMM′的面积;‎ ‎②直线EF上有一动点N,求△DNM周长的最小值.‎ ‎(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.‎ 解:(1)①在▱ABCD中,AB=6,直线EF垂直平分CD,‎ ‎∴DE=FH=3,‎ 又BF:FA=1:5,‎ ‎∴AH=2,‎ ‎∵Rt△AHD∽Rt△MHF,‎ ‎∴,‎ 即,‎ ‎∴HM=1.5,‎ 根据平移的性质,MM'=CD=6,连接BM,如图1,‎ 四边形BHMM′的面积=;‎ ‎②连接CM交直线EF于点N,连接DN,如图2,‎ ‎∵直线EF垂直平分CD,‎ ‎∴CN=DN,‎ ‎∵MH=1.5,‎ ‎∴DM=2.5,‎ 在Rt△CDM中,MC2=DC2+DM2,‎ ‎∴MC2=62+(2.5)2,‎ 即MC=6.5,‎ ‎∵MN+DN=MN+CN=MC,‎ ‎∴△DNM周长的最小值为9.‎ ‎(2)∵BF∥CE,‎ ‎∴,‎ ‎∴QF=2,‎ ‎∴PK=PK'=6,‎ 过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,‎ 当点P在线段CE上时,‎ 在Rt△PK'E'中,‎ PE'2=PK'2﹣E'K'2,‎ ‎∴,‎ ‎∵Rt△PE'K'∽Rt△K'F'Q,‎ ‎∴,‎ 即,‎ 解得:,‎ ‎∴PE=PE'﹣EE'=,‎ ‎∴,‎ 同理可得,当点P在线段DE上时,,如图4,‎ 综上所述,CP的长为或.‎ ‎ ‎ ‎17.(2018•青岛)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.‎ 根据题意解答下列问题:‎ ‎(1)用含t的代数式表示AP;‎ ‎(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;‎ ‎(3)当QP⊥BD时,求t的值;‎ ‎(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.‎ 解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,‎ ‎∴CD=BH=8,DH=BC=6,‎ ‎∴AH=AB﹣BH=8,AD==10,BD==10,‎ 由题意AP=AD﹣DP=10﹣2t.‎ ‎(2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,‎ ‎∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),‎ ‎∴BN=16﹣AN=16﹣(10﹣2t),‎ S=S△PQB+S△BCP=•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]= t2﹣t+72‎ ‎(3)当PQ⊥BD时,∠PQN+∠DBA=90°,‎ ‎∵∠QPN+∠PQN=90°,‎ ‎∴∠QPN=∠DBA,‎ ‎∴tan∠QPN==,‎ ‎∴=,‎ 解得t=,‎ 经检验:t=是分式方程的解,‎ ‎∴当t=s时,PQ⊥BD.‎ ‎(4)存在.‎ 理由:连接BE交DH于K,作KM⊥BD于M.‎ 当BE平分∠ABD时,△KBH≌△KBM,‎ ‎∴KH=KM,BH=BM=8,设KH=KM=x,‎ 在Rt△DKM中,(6﹣x)2=22+x2,‎ 解得x=,‎ 作EF⊥AB于F,则△AEF≌△QPN,‎ ‎∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,‎ ‎∴BF=16﹣[(10﹣2t)﹣2t],‎ ‎∵KH∥EF,‎ ‎∴=,‎ ‎∴=,‎ 解得:t=,‎ 经检验:t=是分式方程的解,‎ ‎∴当t=s时,点E在∠ABD的平分线.‎ ‎ ‎ ‎18.(2018•威海)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.‎ ‎(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;‎ ‎(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;‎ ‎(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;‎ ‎(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.‎ 解:(1)∵点M,N,F分别为AB,AE,BE的中点,‎ ‎∴MF,NF都是△ABE的中位线,‎ ‎∴MF=AE=AN,NF=AB=AM,‎ ‎∴四边形ANFM是平行四边形,‎ 又∵AB⊥AE,‎ ‎∴四边形ANFM是矩形,‎ 又∵tan∠FMN=1,‎ ‎∴FN=FM,‎ ‎∴矩形ANFM是正方形,AB=AE,‎ 又∵∠1+∠2=90°,∠2+∠3=90°,‎ ‎∴∠1=∠3,‎ ‎∵∠C=∠D=90°,‎ ‎∴△ABC≌△EAD(AAS),‎ ‎∴BC=AD=4,CA=DE=5,‎ ‎∴=;‎ ‎(2)可求线段AD的长.‎ 由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,‎ ‎∵tan∠FMN=,即=,‎ ‎∴=,‎ ‎∵∠1=∠3,∠C=∠D=90°,‎ ‎∴△ABC∽△EAD,‎ ‎∴==,‎ ‎∵BC=4,‎ ‎∴AD=8;‎ ‎(3)∵BC⊥CD,DE⊥CD,‎ ‎∴△ABC和△ADE都是直角三角形,‎ ‎∵M,N分别是AB,AE的中点,‎ ‎∴BM=CM,NA=ND,‎ ‎∴∠4=2∠1,∠5=2∠3,‎ ‎∵∠1=∠3,‎ ‎∴∠4=∠5,‎ ‎∵∠FMC=90°+∠4,∠FND=90°+∠5,‎ ‎∴∠FMC=∠FND,‎ ‎∵FM=DN,CM=NF,‎ ‎∴△FMC≌△DNF(SAS);‎ ‎(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,‎ ‎∴图中有:△BMF≌△NFM≌△MAN≌△FNE.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档