全国各地中考数学压轴题二轮复习精选专题讲座几何综合题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

全国各地中考数学压轴题二轮复习精选专题讲座几何综合题

全国各地中考数学压轴题精选讲座二 几何综合题 ‎【知识纵横】‎ ‎ 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答。解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键。‎ 解几何综合题,还应注意以下几点: ‎ ‎⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形。‎ ‎⑵ 掌握常规的证题方法和思路。 ‎ ‎⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法、数形结合、分类讨论等。 ‎ ‎【选择填空】‎ ‎1.(浙江宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【 】‎ ‎  ‎ A.90  B.‎100 ‎ C.110  D.121‎ ‎2. (浙江湖州)如图,将正△ABC分割成m 个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若,则△ABC的边长是 ‎ ‎3. (浙江宁波)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 .‎ ‎【典型试题】‎ ‎1、. (福建厦门)已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分 别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.‎ ‎(1)如图,若PE=,EO=1,求∠EPF的度数;‎ ‎(2)若点P是AD的中点,点F是DO的中点,BF =BC+3-4,求BC的长.‎ ‎【考点】平行四边形的性质,角平分线的性质,三角形中位线定理,全等三角形的判定和性质,正方形的判定和性质,锐角三角函数定义。‎ ‎2. (浙江义乌)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.‎ ‎(1)如图1,当点C1在线段CA的延长线上时,求∠CC‎1A1的度数;‎ ‎(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;‎ ‎(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.‎ ‎【考点】旋转的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质。‎ ‎3.(浙江杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.‎ ‎(1)求∠COB的度数;‎ ‎(2)求⊙O的半径R;‎ ‎(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.‎ ‎【考点】切线的性质,含30度角的直角三角形的性质,锐角三角函数定义,勾股定理,垂径定理,平移、旋转的性质,相似三角形的判定和性质。‎ ‎ ‎ ‎4. (广东佛山)(1)按语句作图并回答:作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(a<4,b<4,圆A与圆C交于B、D两点),连接AB、BC、CD、DA.‎ 若能作出满足要求的四边形ABCD,则a、b应满足什么条件?‎ ‎(2)若a=2,b=3,求四边形ABCD的面积.‎ ‎【考点】作图(复杂作图),相交两圆的性质,勾股定理。‎ ‎5. (浙江嘉兴)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].‎ ‎(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;‎ ‎(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;‎ ‎(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.‎ ‎【考点】新定义,旋转的性质,矩形的性质,含300角直角三角形的性质,平行四边形的性质,相似三角形的判定和性质,公式法解一元二次方,。‎ ‎ ‎ ‎【自主训练】‎ ‎1. (广东汕头)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.‎ ‎(1)求证:△ABG≌△C′DG;‎ ‎(2)求tan∠ABG的值;‎ ‎(3)求EF的长.‎ ‎2. (湖北宜昌)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC于点F.‎ ‎(1)点E可以是AD的中点吗?为什么?‎ ‎(2)求证:△ABG∽△BFE;‎ ‎(3)设AD=a,AB=b,BC=c ‎ ①当四边形EFCD为平行四边形时,求a,b,c应满足的关系;‎ ‎ ②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.‎ ‎3. (广东珠海) 已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.‎ ‎(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);‎ ‎(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;‎ ‎(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.‎ ‎4. (湖北天门)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.‎ ‎(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.‎ ‎(2)如图(2),将∠MDN 绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.‎ ‎(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.‎ ‎5. (四川乐山)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.‎ ‎(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.‎ ‎(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.‎ ‎①求证:BD⊥CF;‎ ‎②当AB=4,AD=时,求线段BG的长.‎
查看更多

相关文章

您可能关注的文档