高考物理专题综合复习1

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考物理专题综合复习1

第二部分 万有引力与运用 知识要点梳理 知识点一——开普勒行星运动定律 ▲知识梳理 1.开普勒第一定律 所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。这就是开普勒第一定律,又称椭圆轨道定律。 2.开普勒第二定律 对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积。这就是开普勒第二定律,又称面积定律。 3.开普勒第三定律 所以行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等。这就是开普勒第三定律,又称周期定律。 若用a表示椭圆轨道的半长轴,T表示公转周期,则(k是一个与行星无关的常量)。 ▲疑难导析 1.开普勒第一定律告诉我们行星绕太阳运动的轨道都是椭圆,太阳处在它的一个焦点上 由第一定律出发,行星运动时,轨道上出现了近日点和远日点。由第二定律可以知道,从近日点向远日点运动时,速率变小,从远日点向近日点运动时速率变大。由第三定律知道,而k值只与太阳有关,与行星无关。 2.开普勒定律的应用 (1)行 星的轨道都近似为圆,计算时可认为行星做匀速圆周运动,这时太阳在圆心上,第三定律为 ; (2)开普勒定律不仅适用于行星,也适用于卫星,若把卫星轨道近似看作圆,第三定律公式为 ,这时由行星决定,与卫星无关。 当天体绕不同的中心星球运行时,中的值是不同的。 (3)对于椭圆轨道问题只能用开普勒定律解决。卫星变轨问题,可结合提供的向心力和需要的向心力的关系来解决。 、关于行星绕太阳运动的下列说法中正确的是:( ) A.所有行星都在同一椭圆轨道上绕太阳运动 B.行星绕太阳运动时太阳位于行星轨道的中心处 C.离太阳越近的行星的运动周期越长 D.所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等 答案:D 解析:所有行星绕太阳运动的轨道都是椭圆,太阳在一个焦点上,但并非在同一个椭圆上,故A、B错。由第三定律知离太阳越近的行星运动周期越小,故C错、D正确。 知识点二——万有引力定律 ▲知识梳理 1.内容 自然界中任何两个物体都相互吸引,引力的大小与物体质量的乘积成正比,与它们之间距离的平方成反比。 ‎ ‎2.公式 为万有引力常量,。 3.适用条件 公式适用于质点间万有引力大小的计算。当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。另外,公式也适用于均匀球体间万有引力大小的计算,只不过r应是两球心间的距离。 4.万有引力的特点 (1)普适性:不但存在于行星和太阳之间,也适合于宇宙中的任何天体,但地球上一般物体之间,由于质量很小,所以人们很难感受或观察到。 (2)相互性:两物体间相互作用的引力是一对作用力与反作用力,总是大小相等、方向相反。 (3)宏观性:通常情况下,万有引力很小,只有在质量巨大的天体间,其存在才有宏观物理意义。 ▲疑难导析 1.重力和万有引力 重力是地面附近的物体受到地球的万有引力而产生的;万有引力是物体随地球自转所需向心力和重力的合力。 如图所示,产生两个效果:一是提供物体随地球自转所需的向心力;二是产生物体的重力。由于,随纬度的增大而减小,所以物体的重力随纬度的增大而增大,即重力加速度从赤道到两极逐渐增大;但一般很小,在一般情况下可认为重力和万有引力近似相等,即常用来计算星球表面的重力加速度。 ‎ ‎ 在地球同一纬度处,g随物体离地面高度的增加而减小,因为物体所受万有引力随物体离地面高度的增加而减小,即。 说明:和不仅适用于地球也适用于其他星球。 在赤道处,物体的分解的两个分力和mg刚好在一条直线上,则有。 2.万有引力定律是牛顿分析行星的运动学和动力学规律 应用开普勒第三定律和科学推理得出的,并且进行了月地检验。 、对于质量为和的两个物体间的万有引力的表达式,下列说法正确的是:( ) A.公式中的G是引力常量,它是由实验得出的,而不是人为规定的 B.当两物体间的距离r趋于零时,万有引力趋于无穷大 C.和所受引力大小总是相等的 D.两个物体间的引力总是大小相等,方向相反的,是一对平衡力 答案:AC 解析:由基本概念、万有引力定律及其适用条件逐项判断。引力常量G值是由英国物理学家卡文迪许运用构思巧妙的“精密”扭秤实验第一次测定出来的,所以选项A正确。万有引力表达式只适用于质点间的作用,当r趋于零时任何物体都不能再视为质点,公式不成立,此时两物体间的作用力并非无穷大,故B错误。两个物体之间的万有引力是一对作用力与反作用力,它们总是大小相等,方向相反,分别作用在两个物体上,所以选项C正确、D错误。 知识点三——应用万有引力定律分析天体的运动 ‎ ▲知识梳理 1.基本方法 把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供. 公式为 解决问题时可根据情况选择公式分析、计算。 2.天体质量M、密度的计算 测出卫星绕中心天体做匀速圆周运动的半径r和周期T,由得 为中心天体的半径) 当卫星沿中心天体表面绕天体运动时,,则。 3.天体(如卫星)运动的线速度、角速度、周期与轨道半径r的关系 (1)由得,所以r越大,v越小; (2)由得,所以r越大,越小; (3)由得,所以r越大,T越大。 ▲疑难导析 1.应用万有引力定律列式的思路与技巧 应用万有引力定律列式时牵涉到三项;万有引力、重力G、向心力,就问题不同选取其中两项组成等式列方程。选取哪两项组成方程,是解决问题的关键。 ‎ ‎ 一般情况下,凡是牵涉(已知或求)中心天体质量、密度等物质量时,用万有引力一项;凡是牵涉物体重力加速度时,用重力G一项,表达式为G=mg,g应为天体(如卫星、宇宙飞船等)所在处的重力加速度;凡是牵涉天体做圆周运动的周期T、角速度、线速度v、向心加速度a等运动学量时用向心力一项,这一项表达形式多样,,解题时选用要准确,公式不能写错.三项中选准两项组建方程,解决问题就方便了。另外注意的应是明确各物理量的意义,不能含糊不清,甚至乱套公式。 2.黄金代换式的运用 在地球表面的物体所受重力和地球对该物体的万有引力差别很小,在一般讨论和计算时,可以认为,且有。即用地球半径的平方与重力加速度的乘积代替地球质量与万有引力常量的乘积,这是一个常用的变换式。在应用万有引力定律分析天体运动问题时,常把天体的运动近似看成是做匀速圆周运动,其所需要的向心力由万有引力提供,即,这样一来,我们便可以应用变换式来分析讨论天体的运动。 3.天体质量的几种计算方法(以地球质量M为例) (1)若已知卫星绕地球做匀速圆周运动的周期T和轨道半径r。 由得。 (2)若已知卫星绕地球做匀速圆周运动的线速度v和半径r。 由得。 (3)若已知卫星绕地球做匀速圆周运动的线速度v和周期T。 由及得。 ‎ ‎ (4)若已知地球半径R及表面的重力加速度g。 由得。 、从地球上观测到太阳的直径对地球的张角为,引力恒量,每年按365天计算,试求: (1)估算出太阳的平均密度; (2)如果太阳密度与地球密度之比为0.3,估算地球的半径。 解析: (1),又∵,太阳的平均密度 (2),联立方程并将代入, 得地球的半径km。 知识点四——宇宙航行 人造地球卫星 ▲知识梳理 1.宇宙速度 (1)第一宇宙速度:人造地球卫星在地面附近环绕地球做匀速圆周运动必须具有的速度叫第一宇宙速度,又称环绕速度。 (R为地球半径),所以‎7.9 km/s,是人造地球卫星的最小发射速度,也是人造地球卫星绕地球做圆周运动的最大速度。 (2)第二宇宙速度(脱离速度):=‎11.2 km/s,使卫星挣脱地球引力束缚的最小发射速度。 ‎ ‎ (3)第三宇宙速度(逃逸速度):=‎16.7 km/s,使卫星挣脱太阳引力束缚的最小发射速度。 2.近地卫星 近地卫星其轨道半径r近似地等于地球半径R,其运动速度‎7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8是所有卫星的最大加速度。 3.地球同步卫星 地球同步卫星,是指位于赤道平面内相对于地面静止的,以和地球自转角速度相同的角速度绕地球运行的人造地球卫星,因为同步卫星主要用于通信等方面,故同步卫星又叫通信卫星。 (1)同步卫星具有以下特点: ①周期一定:同步卫星在赤道上空相对地球静止,它绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,即T=24 h。 ②角速度一定:同步卫星绕地球运行的角速度等于地球自转的角速度。 ③轨道一定:由于同步卫星绕地球的运动与地球的自转同步,这就决定了同步卫星的轨道平面应与赤道平面平行。又由于同步卫星绕地球运动的向心力是地球对卫星的万有引力,这又决定了同步卫星做圆周运动的圆心为地心。所以,所有同步卫星的轨道必在赤道平面内。如图所示,假设卫星在轨道B上跟着地球的自转同步地做匀速圆周运动,卫星运动的向心力由地球对它的引力的一个分力提供,由于另一个分力的作用将使卫星轨道靠向赤道.故只有在赤道上空,同步卫星才可能在稳定的轨道上运行。 ‎ ‎ 由得 (T为地球自转周期,M、R为地球质量、半径)代入数值得m。 即:同步卫星都在同一轨道上绕地球做匀速圆周运动,其轨道离地面的高度约为km。 ④环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是‎3.08 km/s。 ⑤向心加速度大小一定:所有同步卫星由于到地心距离相同,所以,它们绕地球运动的向心加速度大小都相同,约为0.22。 由此可知要发射同步卫星必须同时满足三个条件: a.卫星运动周期和地球自转相同(T=24 h=s),运动方向相同。 b.卫星的运行轨道在地球的赤道平面内。 c.卫星距地面高度有确定值(m)。 (2)同步卫星发射 变轨道发射——发射同步卫星,一般不采用普通卫星的直接发射方法,而是采用变轨道发射(如图)。首先,利用第一级火箭将卫星送到‎180 km~‎200 km的高空,然后依靠惯性进入停泊轨道(A)。 当到达赤道上空时,第二、三级火箭点火,卫星进入位于赤道平面内的椭圆转移轨道(B),且轨道的远地点(D)为35 ‎800 km。 当到达远地点时,卫星启动发动机,然后改变方向进入同步轨道(C)。 这种发射方法有两个优点:一是对火箭推力要求较低;二是发射场的位置不局限在赤道上。 运行时,所具有的机械能越大,把卫星发射到离地球越远的轨道,在地面应具有的初动能越大,即发射速度越大。 ‎ ‎ ▲疑难导析 1.物体随地球自转的向心加速度与环绕地球运行的公转向心加速度 放于地面上的物体随地球自转所需的向心力是地球对物体的引力的分力提供的;而环绕地球运行的卫星所需的向心力由地球对它的全部引力提供。两个向心力的数值相差很多,如质量为‎1kg的物体在赤道上随地球自转所需的向心力只有0.034 N,而它所受地球引力约为9.8 N。 对应的两个向心加速度的计算方法也不同: 物体随地球自转的向心加速度,式中T为地球自转周期,为地表物体到地轴的距离;卫星环绕地球运行的向心加速度,式中M为地球质量,r为卫星与地心的距离。 2.卫星的“超重”和“失重” “超重”:卫星进入轨道前的加速过程,卫星上物体“超重”,此种情况与“升降机”中物体超重相同。 “失重”:卫星进入轨道后,正常运转,卫星上物体完全“失重”(因为重力提供向心力),因此,在卫星上的仪器,凡是制造原理与重力有关的均不能使用。因失重故浮力不再有,水中的气泡不再上浮,体重计不能使用,但弹簧秤仍可使用,因其利用的胡克定律与重力无关,但不能用弹簧秤来测量重力了。 3.运行速度与发射速度 对于人造地球卫星,由得 ‎,该速度指的是人造地球卫星在轨道上的运行速度,其大小随轨道半径的增大而减小。但由于人造地球卫星发射过程中要克服地球引力做功,增大势能,且卫星在半径较大的轨道与在半径较小的轨道上正常运行时相比,增大的势能大于减小的动能,所以卫星在半径较大的轨道上运行时具有的机械能较大,所以将卫星发射到离地球越远的轨道上,在地面所需要的发射速度越大。由,第一宇宙速度是把卫星送出地球的最小发射速度,也是卫星环绕地球运行的最大线速度。 4.直线运动的“追及”与航天器的“对接”有何不同? 对地面物体的直线运动而言,当两个运动物体发生追赶运动时,只要“追赶物体”的速度大于“被追物体”的速度时即可追赶成功。且追赶成功时必有“追赶物体”与“被追物体”相对于同一起点的位移相同。这是“追及问题”的必备条件。 对于航天飞机与宇宙空间站的“对接”,其实际上就是两个匀速圆周运动的物体的追赶问题,本质仍然是人造天体的变轨运行问题。 要使航天飞机与宇宙空间站成功“对接”,必须让航天飞机在较低轨道上加速,通过速度v的增大→所需向心力增大→离心运动→轨道半径r增大→升高轨道,一系列变速、变轨过程而完成航天飞机与宇宙空间站的成功对接。图是航天飞机与宇宙空间站的对接轨道示意图。其中轨道1是地球卫星的一个环绕轨道(圆形轨道),轨道3是宇宙空间站的运行轨道,轨道2是一个长轴的两端点Q、P分别相切于轨道1与轨道3的椭圆轨道。航天飞机只有从预定的环形轨道1上的Q点,以一定的速度和加速度沿轨道2的半个椭圆轨道运动,才能恰好在轨道3上的P点与宇宙空间站实现“对接”。 、关于人造地球卫星和第一宇宙速度,下列说法正确的是:( ) ①第一宇宙速度是人造卫星绕地球做匀速圆周运动的最大速度 ②第一宇宙速度是发射人造卫星所需的最小速度 ③卫星离地面越高,运动速度越大,周期越小 ④同一轨道上的人造卫星,质量越大,向心加速度越大 A.①② B.②③ C.③④ D.①③ 答案:A 解析:‎ 第一宇宙速度是所有地球卫星的最大绕行速度,是最小发射速度,卫星离地面越高,运动速度越小,周期越大,同一轨道上的卫星其向心加速度与卫星质量无关。综上所述只有A项正确。 典型例题透析 题型1 天体质量、密度的计算 (1)天体的运动认为是匀速圆周运动。 (2)求解天体的质量:我们只能求中心天体的质量,找一个绕行体,只要知道绕行体的线速度、角速度、周期中的一个量及其轨道半径,即可求中心天体的质量。 (3)求解天体的密度:当求出天体的质量后,再求出天体的体积即可,其体积,计算时要注意r和R的区别,r一般指绕行体的轨道半径,R指中心天体自身的半径,只有当绕行体在中心天体表面做圆周运动时才有r=R。 1、已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期,地球的自转周期,地球表面的重力加速度g。某同学根据以上条件,提出一种估算地球质量M的方法: 同步卫星绕地心做圆周运动,由得。 (1)请判断上面的结果是否正确,并说明理由。如果不正确,请给出正确的解法和结果。 (2)请根据已知条件再提出两种估算地球质量的方法并解得结果。 思路点拨:本题主要考查怎样利用万有引力定律来估算天体的质量。解决本题的关键在于对天体或卫星的运动进行正确的分析。 解析: (1)上面结果是错误的,地球的半径R在计算过程中不能忽略。 正确的解法和结果:由,得 ‎ (2)方法一:对月球绕地球做圆周运动,由,得。 方法二:在地面重力近似等于万有引力,由,得。 总结升华:解决天体运动问题的一条主线就是利用万有引力等于向心力,向心力公式可根据需要采用不同的表达式。再以黄金代换作为辅助。 变式练习 【变式】一飞船在某行星表面附近沿圆轨道绕该行星飞行。认为行星是密度均匀的球体,要确定该行星的密度,只需要测量:( ) A.飞船的轨道半径 B.飞船的运行速度 C.飞船的运行周期 D.行星的质量 答案:C 解析:万有引力提供向心力,则,由于飞行器在行星表面附近飞行,其运行半径r近似等于行星半径,所以满足,联立得:。 题型2 比较分析卫星运行的轨道参量问题 (1)卫星(或行星)运行时做匀速圆周运动要牢记,万有引力提供向心力这一基本关系。 由根据题目已知条件灵活选用一种表达式, 要注意只与r有关。 同一轨道上的卫星大小是相同的,不同轨道上的卫星可列比例式分析计算。 (2)人造卫星的绕 行速度、角速度、周期、向心加速度与半径的关系: 2、土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动。其中有两个岩石颗粒A和B与土星中心距离分别位km和km。忽略所有岩石颗粒间的相互作用。(结果可用根式表示) (1)求岩石颗粒A和B的线速度之比。 (2)求岩石颗粒A和B的周期之比。 (3)土星探测器上有一物体,在地球上重为10N,推算出他在距土星中心km处受到土星的引力为0.38N。已知地球半径为km,请估算土星质量是地球质量的多少倍? 思路点拨:根据万有引力提供向心力。向心力公式选择有线速度的、周期的公式求比可得(1)、(2)两问。根据万有引力公式及万有引力和重力的关系可得(3)问。 解析: (1)设土星质量为,颗粒质量为m,颗粒距土星中心距离为r,线速度为v, 根据牛顿第二定律和万有引力定律 ① 解得。 对于A、B两颗粒分别有 和,得 ② (2)设颗粒绕土星作圆周运动的周期为T,则 ‎ ‎③ 对于A、B两颗粒分别有 和 得 ④ (3)设地球质量为M,地球半径为,地球上物体的重力可视为万有引力, 探测器上物体质量为,在地球表面重力为,距土星中心=km处的引力为, 根据万有引力定律 ⑤ ⑥ 由⑤⑥得:(倍)。 总结升华:本题考查考生对天体运动基本规律的认识和理解,考查理解能力,推理能力和应用数学处理物理问题的能力。根据所学的基本知识和基本规律即可解决。 变式练习 【变式】最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用时间为1 200年,它与该恒星的距离为地球到太阳距离的100倍,假设该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有:( ) A.恒星质量和太阳质量之比 B.恒星密度和太阳密度之比 C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比 答案:AD 解析:由天体运动的受力特点: 可得中心天体的质量表达式: 进一步可得恒星质量与太阳质量之比: 由周期和速度的关系: ‎ ‎ 可得行星运行速度与地球公转速度之比: 故选项A、D正确。 题型3 双星问题 解决双星模型的问题时,应注意以下几点: 其一,两星之间的万有引力提供各自需要的向心力;其二,两星绕某一点做匀速圆周运动的绕向相同、周期相同;其三,两星的轨道半径之和等于两星间的距离。 3、神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。天文学家观测河外星系麦哲伦云时,发现了LMCX—3双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期。 (1)可见得A所受暗星B的引力可等效为位于O点处质量为的星体(视为质点)对它的引力,设A和B的质量分别为、。试求(用、表示); (2)求暗星B的质量与可见星A的速率v、运行周期T和质量之间的关系式; 思路点拨:根据双星的特征判断出A和B具有相同的角速度和周期,再根据万有引力提供向心力列式分析。 解析: (1)设A、B的轨道半径分别为,它们做圆周运动的周期T、角速度都相同,根据牛顿运动定律有 ‎ ‎ 即 A、B之间的距离 根据万有引力定律 得 (2)对可见星A有 其中 得: 总结升华:此类题目容易错误地认为引力距离与运行半径相同,或认为A、B两星的轨道半径相等,等于引力距离的一半。出现这些错误的原因,主要是没有建立正确地运动模型。 变式练习 【变式】两个靠得很近的恒星称为双星,这两颗星必定以一定角速度绕二者连线上的某一点转动才不至于由于万有引力的作用而吸引在一起,已知两颗星的质量分别为,相距为L,试求; (1)两颗星转动中心的位置; (2)这两颗星转动的周期。 解析:设两星球做圆周运动的轨道半径分别为,它们转动周期T相同,如图。 对: ① ‎ ‎ 对: ② 由①②得 又 ∴= ③ 由③代入①可得:。 题型4 万有引力定律与抛体运动知识的综合应用 星球表面的重力加速度一方面与星球有关(),另一方面又可以从它与运动的关系(平抛运动、自由落体运动、竖直上抛运动)中求出.重力加速度是运动学和万有引力、天体运动联系的纽带。 4、宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度。 思路点拨:在其他星球表面上做平抛运动,与地球上的平抛运动具有相同的运动规律,所以运用相同的分析方法,要注意两处的重力加速度不同。 解析:此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度。 根据平抛运动的特点得抛出物体竖直方向上的位移为 ‎ 设初始平抛小球的初速度为v,则水平位移为x=vt。有 当以2v的速度平抛小球时,水平位移为。所以有 在星球表面上物体的重力近似等于万有引力,有mg=G 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 总结升华:本题属于万有引力与抛体运动的题目,应抓住关键切入点即抛体运动的加速度就是天体表面的重力加速度,而后根据抛体运动规律运动的合成与分解,分两个方向分别研究,同时要注意结合万有引力定律求出该天体表面的重力加速度。 变式练习 【变式】在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为的均匀球体。 解析:以表示火星表面附近的重力加速度,M表示火星的质量,m表示火星的卫星的质量,表示火星表面处某一物体的质量,由万有引力定律和牛顿第二定律,有 ① ② 设v表示着陆器第二次落到火星表面时的速度,它的竖直分量为 ‎,水平分量仍为,有 ③ ④ 由以上各式解得 。 题型5 卫星的变轨问题 卫星绕地球稳定运行时,万有引力提供了卫星做圆周运动的向心力,由G,得,由此可知,轨道半径r越大,卫星的线速度v越小,当卫星由于某种原因速度v突然改变时,受到的万有引力G和需要的向心力不再相等,卫星将偏离原轨道运动。当G>时,卫星做近心运动,其轨道半径r变小,由于万有引力做功,因而速度v越来越大。反之,当G<时,卫星做离心运动,其半径r越来越大,速度v越来越小。 5、某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从慢慢变到,用、分别表示卫星在这两个轨道上的动能,则:( ) A., B., C., D., 答案:B 解析:由于阻力作用,人造卫星的速度减小,从而其受到的万有引力大于其做圆周运动所需的向心力,故人造卫星将靠近圆心运动,到地心的距离将减小 ‎;根据卫星运行速度和轨道半径的关系,可知,所以卫星在这两个轨道上的动能。故B选项正确。 总结升华:本题中由于阻力作用会误认为,错选D。深刻理解速度是由高度决定的,加深“越高越慢”的印象,才能走出误区。 变式练习 【变式】发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道l、2相切于Q点,轨道2、3相切于P点,如图所示,当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的角速度小于在轨道1上的角速度 C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度 D.卫星在圆轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度 答案:BD 解析:在卫星绕地球做匀速圆周运动的问题中,应明确轨道半径越大,速度越小,周期越长,角速度越小,而要想使卫星从低轨道上升至较高的轨道,则必须提供卫星更多的动能。高轨道和低轨道上的动能差用于克服引力做功,卫星在运行过程中的加速度的值应该用来计算。注意题中P点为2、3轨道的切点,Q点为1、2轨道的切点,“相切”隐含着两轨道在切点有瞬时相同的轨道半径,再结合。由上述分析可判断B、D选项正确
查看更多

相关文章

您可能关注的文档