2010-2016江苏高考数学真题解析版本
2010年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ试题
一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置上.
1、设集合A={-1,1,3},B=,则实数=
[解析] 考查集合的运算推理。3B, +2=3, =1.
2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为
[解析] 考查复数运算、模的性质。z(2-3i)=2(3+2 i), 2-3i与3+2 i的模相等,z的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是
[解析]考查古典概型知识。2
4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 ______根在棉花纤维的长度小于20mm。
[解析]考查频率分布直方图的知识。
100×(0.001+0.001+0.004)×5=30
5、 设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数=
[解析]考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由g(0)=0,得a=-1。
6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是
[解析]考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。
7、右图是一个算法的流程图,则输出S的值是
[解析]考查流程图理解。输出。
8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=
[解析]考查函数的切线方程、数列的通项。
在点(ak,ak2)处的切线方程为:当时,解得,
所以。
9、 在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是
[解析]考查圆与直线的位置关系。 圆半径为2,圆心(0,0)到直线12x-5y+c=0的距离小于1,,的取值范围是(-13,13)。
10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为
[解析] 考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,
且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为
11、已知函数,则满足不等式的x的范围是
[解析] 考查分段函数的单调性。
12、设实数x,y满足3≤≤8,4≤≤9,则的最大值是 。来源
[解析] 考查不等式的基本性质,等价转化思想。
,,,的最大值是27。
13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则=_______ [解析] 考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。
(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。
当A=B或a=b时满足题意,此时有:,,,
,= 4。
(方法二),
由正弦定理,得:上式=
14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是
[解析] 考查函数中的建模应用,等价转化思想。一题多解。
设剪成的小正三角形的边长为,则:
(方法一)利用导数求函数最小值。
,
,
当时,递减;当时,递增;
故当时,S的最小值是。
(方法二)利用函数的方法求最小值。
令,则:
故当时,S的最小值是。
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.
15、(本小题满分14分)
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1) 求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2) 设实数t满足()·=0,求t的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。满分14分。
(1)(方法一)由题设知,则
所以
故所求的两条对角线的长分别为、。
(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:
E为B、C的中点,E(0,1)
又E(0,1)为A、D的中点,所以D(1,4)
故所求的两条对角线的长分别为BC=、AD=;
(2)由题设知:=(-2,-1),。
由()·=0,得:,
从而所以。
或者:,
16、(本小题满分14分)
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
(1) 求证:PC⊥BC;
(2) 求点A到平面PBC的距离。
[解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。
(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。
由∠BCD=900,得CD⊥BC,
又PDDC=D,PD、DC平面PCD,
所以BC⊥平面PCD。
因为PC平面PCD,故PC⊥BC。
(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:
易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。
又点A到平面PBC的距离等于E到平面PBC的距离的2倍。
由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,
因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。
易知DF=,故点A到平面PBC的距离等于。
(方法二)体积法:连结AC。设点A到平面PBC的距离为h。
因为AB∥DC,∠BCD=900,所以∠ABC=900。
从而AB=2,BC=1,得的面积。
由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。
因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。
又PD=DC=1,所以。
由PC⊥BC,BC=1,得的面积。
由,,得,
故点A到平面PBC的距离等于。
17、 (14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β
(1) 该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值
(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大
分析:此题关键要找出C点的位置,清楚α-β最大时tan(α-β)也最大
解:(1)因为: ,
则:,,
因为 所以 带入tanα=1.24,tanβ=1.20
得,所以H=124m
(2)由题意知:,
因为所以则
=
=()当且仅当时,即m时最大,因为,所以也取最大值
所以,m时,取最大值
小结:此题主要考察学生对直角三角形角边关系的应用,第二问还考察学生对两角差的正切公式和基本不等式的熟练运用,第一问属于简单题,第二问属于中等题。
总结:这两题充分体现了高考是以基础性题型为主的宗旨,对学生具有扎实基础的重视。虽说第二题与别章有结合,但都属于基本知识的结合,只要学生对各章都有一个坚实的基础,解决这些题目都不会有问题。所以,在以后解三角形的复习中,我们一定要强化三角形基本定理的熟练应用,扎实基础,注重与别章基础知识综合时的灵活运用。
18、(本小题满分16分)
在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
[解析] 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。
(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。
由,得 化简得。
故所求点P的轨迹为直线。
(2)将分别代入椭圆方程,以及得:M(2,)、N(,)
直线MTA方程为:,即,
直线NTB 方程为:,即。
联立方程组,解得:,
所以点T的坐标为。
(3)点T的坐标为直线MTA方程为:,即,
直线NTB 方程为:,即。分别与椭圆联立方程组,同时考虑到,解得:、。
(方法一)当时,直线MN方程为:
令,解得:。此时必过点D(1,0);当时,直线MN方程为:,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。
(方法二)若,则由及,得,此时直线MN的方程为,过点D(1,0)。若,则,直线MD的斜率,
直线ND的斜率,得,所以直线MN过D点。因此,直线MN必过轴上的点(1,0)。
19、(本小题满分16分)
设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。
(1)求数列的通项公式(用表示);
(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。
[解析] 本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力。满分16分。
(1)由题意知:,
,
化简,得:
,
当时,,适合情形。
故所求
(2)(方法一)
, 恒成立。
又,,
故,即的最大值为。
(方法二)由及,得,。
于是,对满足题设的,,有。
所以的最大值。另一方面,任取实数。设为偶数,令,则符合条件,且。
于是,只要,即当时,。
所以满足条件的,从而。因此的最大值为。
20、(本小题满分16分)
设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质; (ii)求函数的单调区间。
(2)已知函数具有性质。给定设为实数,
,,且,若||<||,求的取值范围。
[解析] 本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分。
(1)(i)
∵时,恒成立,
∴函数具有性质;
(ii)(方法一)设,与的符号相同。
当时,,,故此时在区间上递增;
当时,对于,有,所以此时在区间上递增;
当时,图像开口向上,对称轴,而,
对于,总有,,故此时在区间上递增;
(方法二)当时,对于,
所以,故此时在区间上递增;
当时,图像开口向上,对称轴,方程的两根为:,而
当时,,,故此时在区间 上递减;同理得:在区间上递增。
综上所述,当时,在区间上递增;
当时,在上递减;在上递增。
(2)(方法一)由题意,得:
又对任意的都有>0,
所以对任意的都有,在上递增。
又。
当时,,且,
综合以上讨论,得:所求的取值范围是(0,1)。
(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。
①当时,有,
,得,同理可得,所以由的单调性知、,
从而有||<||,符合题设。
②当时,,
,于是由及的单调性知,所以||≥||,与题设不符。
③当时,同理可得,进而得||≥||,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)。
数学Ⅱ(附加题)
21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。
A. 选修4-1:几何证明选讲
(本小题满分10分)
AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。
[解析] 本题主要考查三角形、圆的有关知识,考查推理论证能力。
(方法一)证明:连结OD,则:OD⊥DC,
又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,
∠DOC=∠DAO+∠ODA=2∠DCO,
所以∠DCO=300,∠DOC=600,
所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC。
(方法二)证明:连结OD、BD。
因为AB是圆O的直径,所以∠ADB=900,AB=2 OB。
因为DC 是圆O的切线,所以∠CDO=900。
又因为DA=DC,所以∠DAC=∠DCA,
于是△ADB≌△CDO,从而AB=CO。
即2OB=OB+BC,得OB=BC。
故AB=2BC。
A. 选修4-2:矩阵与变换
(本小题满分10分)
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值。
[解析] 本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力。满分10分。
解:由题设得
由,可知A1(0,0)、B1(0,-2)、C1(,-2)。
计算得△ABC面积的面积是1,△A1B1C1的面积是,则由题设知:。
所以k的值为2或-2。
B. 选修4-4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。
[解析] 本题主要考查曲线的极坐标方程等基本知识,考查转化问题的能力。满分10分。
解:,圆ρ=2cosθ的普通方程为:,
直线3ρcosθ+4ρsinθ+a=0的普通方程为:,
又圆与直线相切,所以解得:,或。
C. 选修4-5:不等式选讲
(本小题满分10分)
设a、b是非负实数,求证:。
[解析] 本题主要考查证明不等式的基本方法,考查推理论证的能力。满分10分。
(方法一)证明:
因为实数a、b≥0,
所以上式≥0。即有。
(方法二)证明:由a、b是非负实数,作差得
当时,,从而,得;
当时,,从而,得;
所以。
[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
22、 (本小题满分10分)
某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。
(1) 记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;
(2) 求生产4件甲产品所获得的利润不少于10万元的概率。
[解析] 本题主要考查概率的有关知识,考查运算求解能力。满分10分。
解:(1)由题设知,X的可能取值为10,5,2,-3,且
P(X=10)=0.8×0.9=0.72, P(X=5)=0.2×0.9=0.18,
P(X=2)=0.8×0.1=0.08, P(X=-3)=0.2×0.1=0.02。
由此得X的分布列为:
X
10
5
2
-3
P
0.72
0.18
0.08
0.02
(2)设生产的4件甲产品中一等品有件,则二等品有件。
由题设知,解得,
又,得,或。
所求概率为
答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。
23、 (本小题满分10分)
已知△ABC的三边长都是有理数。
(1) 求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数。
[解析] 本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。满分10分。
(方法一)(1)证明:设三边长分别为,,∵是有理数,
是有理数,分母为正有理数,又有理数集对于除法的具有封闭性,
∴必为有理数,∴cosA是有理数。
(2)①当时,显然cosA是有理数;
当时,∵,因为cosA是有理数, ∴也是有理数;
②假设当时,结论成立,即coskA、均是有理数。
当时,,
,
,
解得:
∵cosA,,均是有理数,∴是有理数,
∴是有理数。
即当时,结论成立。
综上所述,对于任意正整数n,cosnA是有理数。
(方法二)证明:(1)由AB、BC、AC为有理数及余弦定理知
是有理数。
(2)用数学归纳法证明cosnA和都是有理数。
①当时,由(1)知是有理数,从而有也是有理数。
②假设当时,和都是有理数。
当时,由,
,
及①和归纳假设,知和都是有理数。
即当时,结论成立。
综合①、②可知,对任意正整数n,cosnA是有理数。
2011年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ试题
一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应位置上。
1.已知集合 则
答案:
解析:本题主要考查集合及其表示,集合的运算,容易题.
2.函数的单调增区间是__________
答案:
解析:在在大于零,且增.
Read a,b
If a>b Then
ma
Else
mb
End If
Print m
本题主要考查函数的概念,基本性质,指数与对数,对数函数图象和性质,容易题.
3.设复数i满足(i是虚数单位),则的实部是_________
答案:1
解析:由得到
本题主要考查考查复数的概念,四则运算,容易题.
4.根据如图所示的伪代码,当输入分别为2,3时,最后输出的的值是________
答案:3
解析:,.
本题主要考查考查算法的含义,基本算法语句,选择结构和伪代码,容易题.
5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______
答案:
解析:从1,2,3,4这四个数中一次随机取两个数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种. 其中符合条件的有2种,所以概率为.也可以由得到.
本题主要考查随机事件与概率,古典概型的概率计算,互斥事件及其发生的概率.容易题.
6.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差.
答案:.
解析:五个数的平均数是7,方差为
还可以先把这组数都减去6再求方差,.
本题主要考查总体分布的估计,总体特征数的估计,平均数方差的计算,考查数据处理能力,容易题.
7.已知 则的值为__________.
答案:
解析:.
本题主要考查三角函数的概念,同角三角函数的基本关系式,正弦余弦函数的诱导公式,两角和与差的正弦余弦正切,二倍角的正弦余弦正切及其运用,中档题.
8.在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是________.
答案:4.
解析:设经过原点的直线与函数的交点为,,则.
本题主要考查幂函数,函数图象与性质,函数与方程,函数模型及其应用,两点间距离公式以及基本不等式,中档题.
9.函数是常数,的部分图象如图所示,则
答案:
解析:由图可知:
由图知:
本题主要考查正弦余弦正切函数的图像与性质,的图像与性质以及诱导公式,数形结合思想,中档题.
10.已知是夹角为的两个单位向量, 若,则的值为 .
答案:
解析:由得:,,.
本题主要考查向量的概念,向量的加减数乘运算,向量的数量积及平面向量的平行与垂直,中档题.
11.已知实数,函数,若,则a的值为________
答案:
解析: .
,不符合; .
本题主要考查函数概念,函数与方程,函数模型及其应用,含参的分类讨论,中档题.
12.在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点M,过点P作的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
答案:
解析:设则,过点P作的垂线
,
,所以,t在上单调增,在单调减,.
本题主要考查指数运算,指数函数图象、导数的概念,导数公式,导数的运算与几何意义、利用导数研究函数,导数的应用、直线方程及其斜率、直线的位置关系,运算求解能力,综合应用有关知识的能力,本题属难题.
13.设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是________.
答案:.
解析:
由题意:,
,而的最小值分别为1,2,3;.
本题主要考查综合运用等差、等比的概念及通项公式,不等式的性质解决问题的能力,考查抽象概括能力和推理能力,本题属难题.
14.设集合, ,
若 则实数m的取值范围是______________.
答案:.
解析:当时,集合A是以(2,0)为圆心,以为半径的圆,集合B是在两条平行线之间,(2,0)在直线的上方 ,又因为此时无解;
当时,集合A是以(2,0)为圆心,以和为半径的圆环,集合B是在两条平行线之间,必有当时,只要,.
当时, 只要,
当时,一定符合
又因为,.
本题主要考查集合概念,子集及其集合运算、线性规划,直线的斜率,两直线平行关系,点到直线的距离,圆的方程,直线与圆的位置关系、含参分类讨论、解不等式,及其综合能力.本题属难题.
二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)在△ABC中,角A、B、C所对应的边为
(1)若 求A的值;
(2)若,求的值.
答案:(1)
(2)在三角形中,
由正弦定理得:,而.(也可以先推出直角三角形)
(也能根据余弦定理得到)
解析:本题主要考查同角三角函数基本关系式、和差角公式、正余弦定理及有关运算求解能力,容易题.
16.(本小题满分14分)如图,在四棱锥中,平面PAD⊥平面ABCD,
AB=AD,∠BAD=60°,E、F分别是AP、AD的中点
求证:(1)直线EF//平面PCD;
(2)平面BEF⊥平面PAD.
答案:(1)因为E、F分别是AP、AD的中点,
又
直线EF//平面PCD
(2)连接BD为正三角形
F是AD的中点,
又平面PAD⊥平面ABCD,
所以,平面BEF⊥平面PAD.
解析:本题主要考查空间想象能力和推理论证能力、考查平面的表示,直线与平面、平面与平面平行和垂直的判定及性质,容易题.
17.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
答案:(1)根据题意有(0
0,求证:PA⊥PB.
答案:(1)由题意知M(-2,0),N(0,),M、N的中点坐标为(-1,),
直线PA平分线段MN时,即直线PA经过M、N的中点,又直线PA经过原点,所以.
(2)直线,由得,,
AC方程:即:
所以点P到直线AB的距离
(3)法一:由题意设,
A、C、B三点共线,
又因为点P、B在椭圆上,,两式相减得:
.
法二:设,
A、C、B三点共线,又因为点A、B在椭圆上,
,两式相减得:,
,
法三:由得到
,直线
代入得到,解得,
解析:本题主要考查椭圆的标准方程与几何性质,直线的斜率及其方程,点到直线距离公式、直线的垂直关系的判断.另外还考查了解方程组,共线问题、点在曲线上,字母运算的运算求解能力, 考查推理论证能力.(1)(2)是容易题;(3)是考察学生灵活运用、数学综合能力是难题.
19.(本小题满分16分)已知a,b是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致.
(1)设,若函数和在区间上单调性一致,求实数b的取值范围;
(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
答案:
(1) 因为函数和在区间上单调性一致,所以,
即
即实数b的取值范围是
(1) 由
若,则由,,和在区间上不是单调性一致,
所以.
;又.
所以要使,只有,
取,当时, 因此
当时,因为,函数和在区间(b,a)上单调性一致,所以,
即,
设,考虑点(b,a)的可行域,函数的斜率为1的切线的切点设为
则;
当时,因为,函数和在区间(a, b)上单调性一致,所以,
即,
当时,因为,函数和在区间(a, b)上单调性一致,所以,
即而x=0时,不符合题意,
当时,由题意:
综上可知,。
解析:本题主要考查单调性概念、导数运算及应用、含参不等式恒成立问题,综合考查、线性规划、解二次不等式、二次函数、化归及数形结合的思想,考查用分类讨论思想进行探索分析和解决问题的综合能力.(1)中档题;(2)难题.
20.(本小题满分16分)设M为部分正整数组成的集合,数列的首项,前n项和为,已知对任意整数k属于M,当n>k时,都成立.
(1)设M={1},,求的值;(2)设M={3,4},求数列的通项公式.
答案:(1)即:
所以,n>1时,成等差,而,
(2)由题意:,
当时,由(1)(2)得:
由(3)(4)得:
由(1)(3)得:
由(2)(4)得:
由(7)(8)知:成等差,成等差;设公差分别为:
由(5)(6)得:
由(9)(10)得:成等差,设公差为d,
在(1)(2)中分别取n=4,n=5得:
解析:本题主要考查数列的概念,通项与前n项和的关系,等差数列概念及基本性质、和与通项关系、集合概念、全称量词,转化与化归、考查分析探究及逻辑推理解决问题的能力,其中(1)是中等题,(2)是难题.
数学Ⅱ(附加题)
21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.
若多做,则按作答的前两题评分.
解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
(本小题满分10分)
如图,圆与圆内切于点,其半径分别为与().圆的弦交圆于点(不在上).
求证:为定值.
B.选修4-2:矩阵与变换
(本小题满分10分)
已知矩阵,向量.求向量,使得.
C.选修4-4:坐标系与参数方程
(本小题满分10分)
在平面直角坐标系中,求过椭圆(为参数)的右焦点,且与直线(为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲
(本小题满分10分)
解不等式:.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
如图,在正四棱柱中,,,点是的中点,点在上.
设二面角的大小为.
(1)当时,求的长;
(2)当时,求的长.
23.(本小题满分10分)
设整数,是平面直角坐标系中的点,其中,.
(1)记为满足的点的个数,求;
(2)记为满足是整数的点的个数,求.
2012年普通高等学校招生全国统一考试(江苏卷)
数学
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合,,则 ▲ .
【分析】由集合的并集意义得。
2.某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校
高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生.
【解析】分层抽样又称分类抽样或类型抽样。将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。因此,由知应从高二年级抽取15名学生。
3.设,(i为虚数单位),则的值为 ▲ .
【分析】由得,所以, 。
4.下图是一个算法流程图,则输出的k的值是 ▲ .
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:
是否继续循环
k
循环前
0
0
第一圈
是
1
0
第二圈
是
2
-2
第三圈
是
3
-2
第四圈
是
4
0
第五圈
是
5
4
第六圈
否
输出5
∴最终输出结果k=5。
5.函数的定义域为 ▲ .
【解析】根据二次根式和对数函数有意义的条件,得
。
6.现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .
【解析】∵以1为首项,为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,
∴从这10个数中随机抽取一个数,它小于8的概率是。
7.如图,在长方体中,,,则四棱锥的体积为 ▲ cm3.
【解析】∵长方体底面是正方形,∴△中 cm,边上的高是cm(它也是中上的高)。
∴四棱锥的体积为。由
8.在平面直角坐标系中,若双曲线的离心率为,则的值为 ▲ .
【解析】由得。
∴,即,解得。
9.如图,在矩形中,点为的中点,点在边上,若,则的值是 ▲ .
【解析】由,得,由矩形的性质,得。
∵,∴,∴。∴。
记之间的夹角为,则。
又∵点E为BC的中点,∴。
∴
。
本题也可建立以为坐标轴的直角坐标系,求出各点坐标后求解。
10.设是定义在上且周期为2的函数,在区间上,
其中.若,
则的值为 ▲ .
【解析】∵是定义在上且周期为2的函数,∴,即①。
又∵,,
∴②。
联立①②,解得,。∴。
11.设为锐角,若,则的值为 ▲ .
【解析】∵为锐角,即,∴。
∵,∴。∴。
∴。
∴
。
12.在平面直角坐标系中,圆的方程为,若直线
上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 ▲ .
【解析】∵圆C的方程可化为:,∴圆C的圆心为,半径为1。
∵由题意,直线上至少存在一点,以该点为圆心,1为半径的圆与圆有
公共点;∴存在,使得成立,即。
∵即为点到直线的距离,∴,解得。
∴的最大值是。
13.已知函数的值域为,若关于x的不等式
的解集为,则实数c的值为 ▲ .
【解析】由值域为,当时有,即,
∴。
∴解得,。
∵不等式的解集为,∴,解得。
14.已知正数满足:则的取值范围是 ▲ .
【解析】条件可化为:。
设,则题目转化为:
已知满足,求的取值范围。
作出()所在平面区域(如图)。求出的切
线的斜率,设过切点的切线为,
则,要使它最小,须。
∴的最小值在处,为。此时,点在上之间。
当()对应点时, ,
∴的最大值在处,为7。
∴的取值范围为,即的取值范围是。
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或
演算步骤.
15.在中,已知.
(1)求证:;
(2)若求A的值.
解:(1)∵,∴,即。
由正弦定理,得,∴。
又∵,∴。∴即。
(2)∵ ,∴。∴。
∴,即。∴。
由 (1) ,得,解得。
∵,∴。∴。
16.如图,在直三棱柱中,,分别是棱上的点(点 不同于点),且为的中点.
求证:(1)平面平面;
(2)直线平面.
证明:(1)∵是直三棱柱,∴平面。
又∵平面,∴。
又∵平面,∴平面。
又∵平面,∴平面平面。
(2)∵,为的中点,∴。
又∵平面,且平面,∴。
又∵平面,,∴平面。
由(1)知,平面,∴∥。
又∵平面平面,∴直线平面
17.如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,
炮弹可以击中它?请说明理由.
解:(1)在中,令,得。
由实际意义和题设条件知。
∴,当且仅当时取等号。
∴炮的最大射程是10千米。
(2)∵,∴炮弹可以击中目标等价于存在,使成立,
即关于的方程有正根。
由得。
此时,(不考虑另一根)。
∴当不超过6千米时,炮弹可以击中目标。
18.若函数在处取得极大值或极小值,则称为函数的极值点。
已知是实数,1和是函数的两个极值点.
(1)求和的值;
(2)设函数的导函数,求的极值点;
(3)设,其中,求函数的零点个数.
解:(1)由,得。
∵1和是函数的两个极值点,
∴ ,,解得。
(2)∵ 由(1)得, ,
∴,解得。
∵当时,;当时,,
∴是的极值点。
∵当或时,,∴ 不是的极值点。
∴的极值点是-2。
(3)令,则。
先讨论关于 的方程 根的情况:
当时,由(2 )可知,的两个不同的根为I 和一2 ,注意到是奇函数,∴的两个不同的根为一和2。
当时,∵, ,
∴一2 , -1,1 ,2 都不是的根。
由(1)知。
① 当时, ,于是是单调增函数,从而。
此时在无实根。
② 当时.,于是是单调增函数。
又∵,,的图象不间断,
∴ 在(1 , 2 )内有唯一实根。
同理,在(一2 ,一I )内有唯一实根。
③ 当时,,于是是单调减两数。
又∵, ,的图象不间断,
∴在(一1,1 )内有唯一实根。
因此,当时,有两个不同的根满足;当 时
有三个不同的根,满足。
现考虑函数的零点:
( i )当时,有两个根,满足。
而有三个不同的根,有两个不同的根,故有5 个零点。
( 11 )当时,有三个不同的根,满足。
而有三个不同的根,故有9 个零点。
综上所述,当时,函数有5 个零点;当时,函数有9 个零点。
19.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
解:(1)由题设知,,由点在椭圆上,得
,∴。
由点在椭圆上,得
∴椭圆的方程为。
(2)由(1)得,,又∵∥,
∴设、的方程分别为,。
∴。
∴。①
同理,。②
(i)由①②得,。解得=2。
∵注意到,∴。
∴直线的斜率为。
(ii)证明:∵∥,∴,即。
∴。(lby lfx)
由点在椭圆上知,,∴。
同理。。
∴
由①②得,,,
∴。
∴是定值。
20.已知各项均为正数的两个数列和满足:,,
(1)设,,求证:数列是等差数列;
(2)设,,且是等比数列,求和的值.
解:(1)∵,∴。
∴ 。∴ 。
∴数列是以1 为公差的等差数列。
(2)∵,∴。
∴。(﹡)
设等比数列的公比为,由知,下面用反证法证明
若则,∴当时,,与(﹡)矛盾。
若则,∴当时,,与(﹡)矛盾。
∴综上所述,。∴,∴。
又∵,∴是公比是的等比数列。
若,则,于是。
又由即,得。
∴中至少有两项相同,与矛盾。∴。
∴。
∴ 。
]数学Ⅱ(附加题)
21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.[选修4 - 1:几何证明选讲]如图,是圆的直径,为圆上位于异侧的两点,连结并延长至点,使,连结.
求证:.
证明:连接。
∵是圆的直径,∴(直径所对的圆周角是直角)。
∴(垂直的定义)。
又∵,∴是线段的中垂线(线段的中垂线定义)。
∴(线段中垂线上的点到线段两端的距离相等)。
∴(等腰三角形等边对等角的性质)。
又∵为圆上位于异侧的两点,
∴(同弧所对圆周角相等)。
∴(等量代换)。
B.[选修4 - 2:矩阵与变换] 已知矩阵的逆矩阵,求矩阵的特征值.
解:∵,∴。
∵,∴。
∴矩阵的特征多项式为。
令,解得矩阵的特征值。
C.[选修4 - 4:坐标系与参数方程] (2012年江苏省10分)在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.
解:∵圆圆心为直线与极轴的交点,
∴在中令,得。
∴圆的圆心坐标为(1,0)。
∵圆经过点,∴圆的半径为。
∴圆经过极点。∴圆的极坐标方程为。
D.[选修4 - 5:不等式选讲] 已知实数x,y满足:求证:.
证明:∵,
由题设∴。∴。
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.
(1)求概率;
(2)求的分布列,并求其数学期望.
解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,
∴共有对相交棱。
∴ 。
(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,
∴ ,。
∴随机变量的分布列是:
0
1
∴其数学期望。
23.设集合,.记为同时满足下列条件的集合的个数:
①;②若,则;③若,则。
(1)求;
(2)求的解析式(用表示).
解:(1)当时,符合条件的集合为:,
∴ =4。
( 2 )任取偶数,将除以2 ,若商仍为偶数.再除以2 ,··· 经过次以后.商必为奇数.此时记商为。于是,其中为奇数。
由条件知.若则为偶数;若,则为奇数。
于是是否属于,由是否属于确定。
设是中所有奇数的集合.因此等于的子集个数。
当为偶数〔 或奇数)时,中奇数的个数是()。
∴。
2013年普通高等学校招生全国统一考试(江苏卷)
数学
一、填空题:本大题共14小题,每小题5分,共计70分。请把答案填写在答题卡相印位置上。
1.函数的最小正周期为 .
【解析】T=||=||=π.
2.设(为虚数单位),则复数的模为 .
【解析】z=3-4i,i2=-1,| z |=32+42=5.
3.双曲线的两条渐近线的方程为 .
【解析】令:,得.
4.集合共有 个子集.
【解析】23=8.
5.右图是一个算法的流程图,则输出的的值是 .
【解析】n=1,a=2,a=4,n=2;a=10,n=3;a=28,n=4.
6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:
运动员
第一次
第二次
第三次
第四次
第五次
甲
87
91
90
89
93
乙
89
90
91
88
92
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .
【解析】易得乙较为稳定,乙的平均值为:.
方差为:.
7.现在某类病毒记作,其中正整数,(,)可以任意选取,则
都取到奇数的概率为 .
【解析】m取到奇数的有1,3,5,7共4种情况;n取到奇数的有1,3,5,7,9共5种情况,则都取到奇数的概率为.
8.如图,在三棱柱中,分别是的中点,设三棱锥的体积为,三棱柱的体积为,则 .
【解析】三棱锥与三棱锥的相似比为1:2,故体积之比为1:8.
又因三棱锥与三棱柱的体积之比为1:3.所以,三棱锥与三棱柱的体积之比为1:24.
9.抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部和边界) .若点是区域内的任意一点,则的取值范围是 .
【解析】抛物线在处的切线易得为y=2x—1,令z=,y=—x+.
画出可行域如下,易得过点(0,—1)时,zmin=—2,过点(,0)时,zmax=.
y
x
O
y=2x—1
y=—x
10.设分别是的边上的点,,,
若(为实数),则的值为 .
【解析】
所以,,,.
11.已知是定义在上的奇函数。当时,,则不等式 的解集用区间表示为 .
【解析】做出 ()的图像,如下图所示。由于是定义在上的奇函数,利用奇函数图像关于原点对称做出x<0的图像。不等式,表示函数y=的图像在y=x的上方,观察图像易得:解集为(﹣5,0) ∪(5,﹢∞)。
x
y
y=x
y=x2—4 x
P(5,5)
Q(﹣5, ﹣5)
12.在平面直角坐标系中,椭圆的标准方程为,右焦点为
y
x
l
B
F
O
c
b
a
,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为 .
【解析】如图,l:x=,=-c=,由等面积得:=。若,则=,整理得:,两边同除以:,得:,解之得:=,所以,离心率为:.
13.在平面直角坐标系中,设定点,是函数()图象上一动点,
若点之间的最短距离为,则满足条件的实数的所有值为 .
【答案】1或
解析:设P点的坐标为,则
|PA|2=.令,则|PA|2=t2-2at+2a2-2=(t-a)2+a2-2(t≥2).
结合题意可知
(1)当a≤2,t=2时,|PA|2取得最小值.此时(2-a)2+a2-2=8,解得a=-1,a=3(舍去).
(2)当a>2,t=a时,|PA|2取得最小值.此时a2-2=8,解得a=,a=(舍去).故满足条件的实数a的所有值为,-1.
14.在正项等比数列中,,,则满足的
最大正整数的值为 .
【解析】设正项等比数列首项为a1,公比为q,则:,得:a1=,q=2,an=26-n.记,.,则,化简得:,当时,.当n=12时,,当n=13时,,故nmax=12.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
已知,.
(1)若,求证:;
(2)设,若,求的值.
解:(1)a-b=(cosα-cosβ,sinα-sinβ),
|a-b|2=(cosα-cosβ)2+(sinα-sinβ)2=2-2(cosα·cosβ+sinα·sinβ)=2,
所以,cosα·cosβ+sinα·sinβ=0,
所以,.
(2),①2+②2得:cos(α-β)=-.
所以,α-β=,α=+β,
带入②得:sin(+β)+sinβ=cosβ+sinβ=sin(+β)=1,
所以,+β=.
所以,α=,β=.
16.(本小题满分14分)
如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:
(1)平面平面;
(2).
证:(1)因为SA=AB且AF⊥SB,
所以F为SB的中点.
又E,G分别为SA,SC的中点,
所以,EF∥AB,EG∥AC.
又AB∩AC=A,AB面SBC,AC面ABC,
所以,平面平面.
(2)因为平面SAB⊥平面SBC,平面SAB∩平面SBC=BC,
AF平面ASB,AF⊥SB.
所以,AF⊥平面SBC.
又BC平面SBC,
所以,AF⊥BC.
又AB⊥BC,AF∩AB=A,
所以,BC⊥平面SAB.
又SA平面SAB,
所以,.
17.x
y
A
l
O
(本小题满分14分)
如图,在平面直角坐标系中,点,直线.
设圆的半径为,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,
求切线的方程;
(2)若圆上存在点,使,求圆心的横坐
标的取值范围.
解:(1)联立:,得圆心为:C(3,2).
设切线为:,
d=,得:.
故所求切线为:.
(2)设点M(x,y),由,知:,
化简得:,
即:点M的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D.
又因为点在圆上,故圆C圆D的关系为相交或相切.
故:1≤|CD|≤3,其中.解之得:0≤a≤.
18.(本小题满分16分)
如图,游客从某旅游景区的景点处下山至处有两种路径。一种是从沿直线步行
到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两
位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从
乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的
速度为,山路长为,经测量,,.
(1)求索道的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过分钟,
C
B
A
D
M
N
乙步行的速度应控制在什么范围内?
解:(1)如图作BD⊥CA于点D,
设BD=20k,则DC=25k,AD=48k,
AB=52k,由AC=63k=1260m,
知:AB=52k=1040m.
(2)设乙出发x分钟后到达点M,
此时甲到达N点,如图所示.
则:AM=130x,AN=50(x+2),
由余弦定理得:MN2=AM2+AN2-2 AM·ANcosA=7400 x2-14000 x+10000,
其中0≤x≤8,当x=(min)时,MN最小,此时乙在缆车上与甲的距离最短.
(3)由(1)知:BC=500m,甲到C用时:=(min).
若甲等乙3分钟,则乙到C用时:+3= (min),在BC上用时: (min) .
此时乙的速度最小,且为:500÷=m/min.
若乙等甲3分钟,则乙到C用时:-3= (min),在BC上用时: (min) .
此时乙的速度最大,且为:500÷=m/min.
故乙步行的速度应控制在[,]范围内.
19.(本小题满分16分)
设是首项为,公差为的等差数列,是其前项和.记,
,其中为实数.
(1)若,且成等比数列,证明:();
(2)若是等差数列,证明:.
证:(1)若,则,,.
当成等比数列,,
即:,得:,又,故.
由此:,,.
故:().
(2),
. (※)
若是等差数列,则型.
观察(※)式后一项,分子幂低于分母幂,
故有:,即,而≠0,
故.
经检验,当时是等差数列.
20.(本小题满分16分)
设函数,,其中为实数.
(1)若在上是单调减函数,且在上有最小值,求的取值范围;
(2)若在上是单调增函数,试求的零点个数,并证明你的结论.
解:(1)≤0在上恒成立,则≥, .
故:≥1.
,
若1≤≤e,则≥0在上恒成立,
此时,在上是单调增函数,无最小值,不合;
若>e,则在上是单调减函数,在上是单调增函数,,满足.
故的取值范围为:>e.
(2)≥0在上恒成立,则≤ex,
故:≤.
.
(ⅰ)若0<≤,令>0得增区间为(0,);
令<0得减区间为(,﹢∞).
当x→0时,f(x)→﹣∞;当x→﹢∞时,f(x)→﹣∞;
当x=时,f()=﹣lna-1≥0,当且仅当=时取等号.
故:当=时,f(x)有1个零点;当0<<时,f(x)有2个零点.
(ⅱ)若a=0,则f(x)=﹣lnx,易得f(x)有1个零点.
(ⅲ)若a<0,则在上恒成立,
即:在上是单调增函数,
当x→0时,f(x)→﹣∞;当x→﹢∞时,f(x)→﹢∞.
此时,f(x)有1个零点.
综上所述:当=或a<0时,f(x)有1个零点;当0<<时,f(x)有2个零点.
数学Ⅱ(附加题)
【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
21.(2013江苏,21)A.[选修4-1:几何证明选讲](本小题满分10分)
如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.
证明:连结OD.因为AB和BC分别与圆O相切于点D,C,
所以∠ADO=∠ACB=90° .
又因为∠A=∠A,所以Rt△ADO∽Rt△ACB.
所以.
又BC=2OC=2OD,故AC=2AD.
B.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A=,B=,求矩阵A-1B.
[选修4-2:矩阵与变换]解:设矩阵A的逆矩阵为,则=,即=,
故a=-1,b=0,c=0,,从而A的逆矩阵为A-1=,
所以A-1B==.
C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.
解:因为直线l的参数方程为(t为参数),由x=t+1得t=x-1,代入y=2t,得到直线l的普通方程为2x-y-2=0.
同理得到曲线C的普通方程为y2=2x.
联立方程组解得公共点的坐标为(2,2),.
D.[选修4-5:不等式选讲](本小题满分10分)已知a≥b>0,求证:2a3-b3≥2ab2-a2b.
证明:2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).
因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,
从而(a-b)(a+b)(2a+b)≥0,即2a3-b3≥2ab2-a2b.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(2013江苏,22)(本小题满分10分)如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
解:(1)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,
则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),
所以=(2,0,-4),=(1,-1,-4).
因为cos〈,〉=
=,
所以异面直线A1B与C1D所成角的余弦值为.
(2)设平面ADC1的法向量为n1=(x,y,z),因为=(1,1,0),=(0,2,4),所以n1·=0,n1·=0,即x+y=0且y+2z=0,取z=1,得x=2,y=-2,所以,n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为θ.
由|cos θ|=,得sin θ=.
因此,平面ADC1与平面ABA1所成二面角的正弦值为.
23.(2013江苏,23)(本小题满分10分)设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,,…,即当(k∈N*)时,an=(-1)k-1k.记Sn=a1+a2+…+an(n∈N*).对于l∈N*,定义集合Pl={n|Sn是an的整数倍,n∈N*,且1≤n≤l}.
(1)求集合P11中元素的个数;
(2)求集合P2 000中元素的个数.
解:(1)由数列{an}的定义得a1=1,a2=-2,a3=-2,a4=3,a5=3,a6=3,a7=-4,a8=-4,a9=-4,a10=-4,a11=5,所以S1=1,S2=-1,S3=-3,S4=0,S5=3,S6=6,S7=2,S8=-2,S9=-6,S10=-10,S11=-5,从而S1=a1,S4=0×a4,S5=a5,S6=2a6,S11=-a11,所以集合P11中元素的个数为5.
(2)先证:Si(2i+1)=-i(2i+1)(i∈N*).
事实上,①当i=1时,Si(2i+1)=S3=-3,-i(2i+1)=-3,故原等式成立;
②假设i=m时成立,即Sm(2m+1)=-m(2m+1),则i=m+1时,S(m+1)(2m+3)=Sm(2m+1)+(2m+1)2-(2m+2)2=-m(2m+1)-4m-3=-(2m2+5m+3)=-(m+1)(2m+3).
综合①②可得Si(2i+1)=-i(2i+1).于是S(i+1)(2i+1)=Si(2i+1)+(2i+1)2=-i(2i+1)+(2i+1)2=(2i+1)(i+1).
由上可知Si(2i+1)是2i+1的倍数,而ai(2i+1)+j=2i+1(j=1,2,…,2i+1),所以Si(2i+1)+j=Si(2i+1)+j(2i+1)是ai(2i+1)+j(j=1,2,…,2i+1)的倍数.又S(i+1)(2i+1)=(i+1)(2i+1)不是2i+2的倍数,而a(i+1)(2i+1)+j=-(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j=S(i+1)(2i+1)-j(2i+2)=(2i+1)(i+1)-j(2i+2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合Pl中元素的个数为1+3+…+(2i-1)=i2,于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合Pl中元素的个数为i2+j.
又2 000=31×(2×31+1)+47,故集合P2 000中元素的个数为312+47=1 008.
2014年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ试题
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合,,则 .
【答案】
2.已知复数(i为虚数 单位),则z的实部为 .
【答案】21
3.右图是一个算法流程图,则输出的n的值是 .
【答案】5
4.从这4个数中一次随机地取2个数,则所取2个数的乘积为6的
概率是 .
【答案】
5.已知函数与,它们的 图象 有一个横坐标为
的交点,则的值是 .
【答案】
6.设抽测的树木的底部周长均在区间上,其频率分布
直方图如图所示,则在抽测的60株树木中,有 株
树木的底部周长小于100 cm.
【答案】24
7.在各项均为正数的等比数 列中,若,,
则的值是 .
【答案】4
8.设甲 、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是 .
【答案】
9.在平面直角坐标系xOy中,直线被圆截得的弦长为 .
【答案】
10.已知函数,若 对任意,都有成立,则实数m的取值范围是 .
【答案】
11.在平面直角坐标系xOy中,若曲线(为常数)过点,且该曲线在点P处的切线与直线平行,则的值是 .
【答案】
12.如图,在平行四边形ABCD中,已知 ,,,则的
值是 .
【答案】22
13.已知是定义在R上且周期为3的函数,当时,.若函数在区间上有10个零点(互不相同),则实数a的取值范围是 .
【答案】
14.若的内角满足,则的最小值是 .
【答案】
二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内作答, 解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14 分)已知,.
(1)求的值;
(2) 求的值.
【答案】本小题主要 考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能
力. 满分14分.
(1)∵,
∴
;
(2)∵
∴.
16.(本小题满分14 分)如图,在三棱锥中,分别为棱的中点.已知.
(1)求证:直线PA∥平面DEF ;
(2)平面BDE⊥平面ABC.
【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,
考查空间想象能力和推理论证能力.满分14分.
( 1)∵为中点 ∴DE∥PA
∵平面DEF,DE平面DEF ∴PA∥平面DEF
(2)∵为中点 ∴
∵为中点 ∴
∴ ∴,∴DE⊥EF
∵,∴
∵ ∴DE⊥平面ABC
∵DE平面BDE, ∴平面BDE⊥平面ABC.
17.(本小 题满分14 分)如图,在平面直角坐标系xOy中,分别是椭圆的左、右 焦点,顶点B的坐标为,连结并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结.
(1)若点C的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率e的值.
【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运
算求解能力. 满分14分.
(1)∵,∴
∵,∴,∴
∴椭圆方程 为
(2)设焦点
∵关于x轴对称,∴
∵三点共线,∴,即①
∵ ,∴,即②
①②联立方程组,解得 ∴
∵C在椭圆上,∴,
化简得,∴, 故离心 率为
18.(本小题满分16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O 正北方向60 m处,点C位于点O正东方向170m处(OC为河岸),.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分.
解法一:
(1) 如图,以O为坐标原点,OC 所在直线为x轴,建立平面直角坐标系xOy.
由条件知A(0, 60),C(170, 0),
直线BC的斜率k BC=-tan∠BCO=-.
又因为AB⊥BC,所以直线AB的斜率k AB=.
设点B的坐标为(a,b),则k BC=
k AB=
解得a=80 ,b=120. 所以BC=.
因此新桥BC的长是150 m.
(2)设保护区的边界圆M的半径为r m,OM=d m,(0≤d≤60).
由条件知,直线BC的方程为,即
由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,
即.
因 为O和A到圆M上任意一点的距离均不少于80 m,
所以即解得
故当d=10时,最大,即圆面积最大.
所以当OM = 10 m时,圆形保护区的面积最大.
解法二:(1)如图,延长OA, CB交于点F.
因为tan∠BCO=.所以sin∠FCO=,cos∠FCO=.
因为OA=6 0,OC=170,所以OF=OC tan∠FCO=.
CF=,从而.
因为OA⊥OC,所以cos∠AFB=sin∠FCO==,
又因为AB⊥BC,所以BF=AF cos∠AFB==,从而BC=CF-BF=150.
因此新桥BC的长是150 m.
(2)设保护区的边界圆M与BC的切点为D,连接MD,则MD⊥BC,且MD是圆M的半
径, 并设MD=r m,OM=d m(0≤d≤60).
因为OA⊥OC,所以sin∠CFO = cos∠FCO,
故由(1)知,sin∠CFO = 所以.
因为O和A到圆M上任意一点的距离均不少于80 m,
所以即 解得
故 当d=10时,最大,即圆面积最大.
所以当OM = 10 m时,圆形保护区的面积最大.
19.(本小题满分1 6分)已知函数其中e是自然对数的底数.
(1 )证明:是上的偶函数;
(2)若关于x的 不等式在上恒成立,求实数m的取值范围;
(3)已知正数a满足:存 在,使得成立.试比较与的大小,并证明你的结论.
【答案】本小题主要考查初等函数的基 本性质、导数的应用等基础知识,考查综合运用数学思想
方法分析与解决问题的能力.满分16分.
(1),,∴是上的偶函数
(2 ) 由题意,,即
∵,∴,即对恒成立
令,则对任意恒成立
∵,当且仅当时等号成立
∴
(3),当时,∴在上单调增
令 ,
∵,∴, 即在上单调减
∵存在,使得, ∴,即
∵
设,则
当时,,单调增;
当时,,单 调减
因此至多有两个零点,而
∴当时,,;
当 时,,;
当时,,.
20.(本小题满分16 分)设数列的前n项和为.若对任意的正整数n,总存在正整数m,使得,则称是“H数列”.
(1)若数列 的前n项和,证明:是“H数列”;
(2)设 是等差数列,其首项,公差.若是“H数列”,求d的值;
(3)证明:对任意的等差数列,总存在两个“H数列”和,使得成立.
【答案】本小题主要考查数列的概念、等 差数列等基础知识,考查探究能力及推理论证能力, 满分16分.
(1)当时 ,
当时,
∴时,,当时,
∴是“H数列”
(2)
对,使,即
取得,
∵,∴,又,∴,∴
(3)设的 公差为d
令,对,
,对,
则,且为等差数列
的前n项和, 令,则
当 时;
当时;
当时,由于n与奇偶性不同,即非负偶数,
因此对,都可 找到,使成立,即为“H数列”.
的前n项和,令,则
∵对,是非负偶数,∴
即对,都可找到,使得成立,即为“H数列”
因此命题得证.
数学Ⅱ(附加题)
21.【选做题】本题包括A, B,C,D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
A.【选修4-1:几何证明选讲】(本小题满分10分)
如图,AB是圆O的直径,C、 D是圆O 上位于AB异侧的两点
证明:∠OCB=∠D.
本小题主要考查圆的基本性质,考查推理论证能力.满分10分.
证明:因为B, C是圆O上的两点,所以OB=OC.
故∠OCB=∠B.
又因为C, D是圆O上位于 AB异侧的两点,
故∠B,∠D为同弧所对的两个圆周角,
所以∠B=∠D.
因此∠OCB=∠D.
B.【选修4-2:矩阵与变换】(本小题满分10分)
已知矩阵,,向量,为实数,若,求的值.
【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分.
,,由得解得
C.【选修4-4: 坐标系与参数方程】(本小题满分10分)
在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线交于两点,求线段AB的长.
【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.
直线l:代入抛物线方程并整理得
∴交点,,故
D.【选修4-5:不等式选讲】(本小题满分10分)
已知x>0, y>0,证明:(1+x+y2)( 1+x2+y)≥9xy.
本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分.
证明:因为x>0, y>0, 所以1+x+y2≥,1+x2+y≥,
所以(1+x+y2)( 1+x2+y)≥=9xy.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演 算步骤.
22.(本小题满分10分)
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1 )从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为,随机变量X 表示 中的最大数,求X的概率分布和数学期望.
22. 【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.
(1)一次取2个球共有种可能情况,2个球颜色相同共有种可能情况
∴取出的2个球颜色相同的概 率
(2)X的所有可能取值为,则
∴X的概率分布列为
X
2
3
4
P
故X的数学期望
23.(本小题满分10分)
已知函数,记为 的导数,.
(1)求的值;
(2)证明:对任意的,等式成立.
23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.
(1)解:由已知,得
于是
所以
故
(2)证明 :由已知,得等式两边分别对x求导,得,
即,类似可得
,
,
.
下面 用数学归纳法证明等式对所有的都成立.
(i)当n=1时,由上可知等式成立.
(ii )假设当n=k时等式成立, 即.
因为
,
所 以.
所以当n学 科王=k+1时,等式也成立.
综合(i),(ii)可知等式对所有的都成立.
令,可得().
所以().
2015年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
一、填空题:本大题共14个小题,每小题5分,共70分.
1.已知集合,,则集合中元素的个数为_______.
【解析】
试题分析:
2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.
考点:平均数
3.设复数z满足(i是虚数单位),则z的模为_______.
【解析】
试题分析:
4.根据如图所示的伪代码,可知输出的结果S为________.
S←1
I←1
While I10
S←S+2
I←I+3
End While
Print S
(第4题图)
【解析】
试题分析:第一次循环:;第二次循环:;第三次循环:;结束循环,输出
5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
6.已知向量a=,b=, 若ma+nb=(), 的值为______.
【解析】
试题分析:由题意得:
7.不等式的解集为________.
【解析】
试题分析:由题意得:,解集为
8.已知,,则的值为_______.
【解析】
试题分析:
9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为
【解析】
试题分析:由体积相等得:
10.在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为
11.数列满足,且(),则数列的前10项和为
【解析】
试题分析:由题意得:
所以
12.在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线的距离大于c恒成立,则是实数c的最大值为
【解析】
试题分析:设,因为直线平行于渐近线,所以c的最大值为直线与渐近线之间距离,为
13.已知函数,,则方程实根的个数为
14.设向量,则的值为
【解析】
试题分析:
因此
二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)
15.(本小题满分14分)
在中,已知.
(1)求的长;
(2)求的值.
16.(本题满分14分)
如图,在直三棱柱中,已知,,设的中点为,
.求证:(1);
(2).
17.(本小题满分14分)
某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型. (1)求a,b的值; (2)设公路l与曲线C相切于P点,P的横坐标为t. ①请写出公路l长度的函数解析式,并写出其定义域; ②当t为何值时,公路l的长度最短?求出最短长度
.
(2)①由(1)知,(),则点的坐标为,
设在点处的切线交,轴分别于,点,,
考点:利用导数求函数最值,导数几何意义
18.(本小题满分16分)
如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左
准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
(2)当轴时,,又,不合题意.
当与轴不垂直时,设直线的方程为,,,
将的方程代入椭圆方程,得,
则,的坐标为,且
.
若,则线段的垂直平分线为轴,与左准线平行,不合题意.
从而,故直线的方程为,
则点的坐标为,从而.
因为,所以,解得.
此时直线方程为或.
19.(本小题满分16分)
已知函数.
(1)试讨论的单调性;
(2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a
的取值范围恰好是,求c的值.
当时, 在,上单调递增,在上单调递减;
当时, 在,上单调递增,在上单调递减.
(2)
20.(本小题满分16分)
设是各项为正数且公差为d的等差数列
(1)证明:依次成等比数列;
(2)是否存在,使得依次成等比数列,并说明理由;
(3)是否存在及正整数,使得依次成等比数列,并说明理由.
(2)令,则,,,分别为,,,(,,).
假设存在,,使得,,,依次构成等比数列,
则,且.
令,则,且(,),
化简得(),且.将代入()式,
,则.
显然不是上面方程得解,矛盾,所以假设不成立,
因此不存在,,使得,,,依次构成等比数列.
(3)假设存在,及正整数,,使得,,,依次构成等比数列,
则,且.
分别在两个等式的两边同除以及,并令(,),
则,且.
将上述两个等式两边取对数,得,
且.
化简得,
且.
再将这两式相除,化简得().
令,
则.
令,
则.
令,则.
令,则.
由,,
知,,,在和上均单调.
故只有唯一零点,即方程()只有唯一解,故假设不成立.
所以不存在,及正整数,,使得,,,依次构成等比数列.
考点:等差、等比数列的定义及性质,函数与方程
附加题
21.A(选修4—1:几何证明选讲)
如图,在中,,的外接圆圆O的弦交于点D
求证:∽
A
B
C
E
D
O
(第21——A题)
21.B(选修4—2:矩阵与变换)
已知,向量是矩阵的属性特征值的一个特征向量,矩阵以及它的另一个特征值.
试题解析:由已知,得,即,
则,即,所以矩阵.
从而矩阵的特征多项式,所以矩阵的另一个特征值为.
考点:矩阵运算,特征值与特征向量
21.C(选修4—4:坐标系与参数方程)
已知圆C的极坐标方程为,求圆C的半径.
【答案】
考点:圆的极坐标方程,极坐标与之间坐标互化
21.D(选修4—5:不等式选讲)
解不等式
试题分析:根据绝对值定义将不等式化为两个不等式组的并集,分别求解即可
试题解析:原不等式可化为或.
解得或.
综上,原不等式的解集是.
考点:含绝对值不等式的解法
22.(本小题满分10分)
如图,在四棱锥中,已知平面,且四边形为直角梯
形,,
(1)求平面与平面所成二面角的余弦值;
(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长
P
A
B
C
D
Q
23.(本小题满分10分)
已知集合,,
,令表示集合所含元素的个数.
(1)写出的值;
(2)当时,写出的表达式,并用数学归纳法证明.
下面用数学归纳法证明:
①当时,,结论成立;
②假设()时结论成立,那么时,在的基础上新增加的元素在,
2016年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1. 已知集合,,则 .
【解析】 由交集的定义可得.
2. 复数,其中为虚数单位,则的实部是 .
【解析】 由复数乘法可得,则则的实部是5.
3. 在平面直角坐标系中,双曲线的焦距是 .
【解析】 ,因此焦距为.
4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .
【答案】 ;
【解析】 ,.
5.函数的定义域是 .
【解析】 ,解得,因此定义域为.
6. 如图是一个算法的流程图,则输出的值是 .
1
5
9
9
7
5
则输出时.
7.将一个质地均匀的骰子(一种各个面上分别标有个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .
【解析】 将先后两次点数记为,则共有个等可能基本事件,其中点数之和大于等于10有六种,则点数之和小于10共有30种,概率为.
8.已知是等差数列,是其前项和.若,,则的值是 .
【解析】 设公差为,则由题意可得,,
解得,,则.
9.定义在区间上的函数的图象与的图象的交点个数是 .
【解析】 画出函数图象草图,共7个交点.
10.如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于两点,且,则该椭圆的离心率是 .
【解析】 由题意得,直线与椭圆方程联立可得,,
由可得,,,
则,由可得,则.
11.设是定义在上且周期为2的函数,在区间上
其中,若,则的值是
【解析】 由题意得,,
由可得,则,
则.
12.已知实数满足 则的取值范围是 .
【解析】 在平面直角坐标系中画出可行域如下
为可行域内的点到原点距离的平方.
可以看出图中点距离原点最近,此时距离为原点到直线的距离,
,则,
图中点距离原点最远,点为与交点,则,
则.
13.如图,在中,是的中点,是上两个三等分点,,,
则的值是 .
【解析】 令,,则,,,
则,,,,,,
则,,,
由,可得,,因此,
因此.
14.在锐角三角形中,,则的最小值是 .
【解析】 由,,
可得(*),
由三角形为锐角三角形,则,
在(*)式两侧同时除以可得,
又(#),
则,
由可得,
令,由为锐角可得,
由(#)得,解得
,
,由则,因此最小值为,
当且仅当时取到等号,此时,,
解得(或互换),此时均为锐角.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.
15.(本小题满分14分)
在中,,,.
⑴ 求的长;
⑵ 求的值.
【解析】⑴ ,为三角形的内角
,即:;
⑵
又为三角形的内角
.
16.(本小题满分14分)
如图,在直三棱柱中,分别为的中点,点在侧棱上,
且,.
求证:⑴ 直线平面;
⑵ 平面平面.
【解析】⑴ 为中点,为的中位线
又为棱柱,
,又平面,且
平面;
⑵ 为直棱柱,平面
,又
且,平面
平面,
又,平面
又平面,
又,,且平面
平面,又
平面平面.
17.(本小题满分14分)
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的倍.
⑴ 若,,则仓库的容积是多少;
⑵ 若正四棱锥的侧棱长为,当为多少时,仓库的容积最大?
【解析】⑴ ,则,
,,
,
故仓库的容积为;
⑵ 设,仓库的容积为
则,,,
,
,
,
,
当时,,单调递增,
当时,,单调递减,
因此,当时,取到最大值,
即时,仓库的容积最大.
[来源:学|科|网]
18.(本小题满分14分)
如图,在平面直角坐标系中,已知以为圆心的圆:
及其上一点.
⑴ 设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;
⑵ 设平行于的直线与圆相交于两点,且,求直线的方程;
⑶ 设点满足:存在圆上的两点和,使得,求实数的取值范围.
【解析】⑴ 因为在直线上,设,因为与轴相切,
则圆为,
又圆与圆
外切,圆:,
则,解得,即圆的标准方程为;
⑵ 由题意得, 设,则圆心到直线的距离,
则,,即,
解得或,即:或;
⑶ ,即,即,
,
又,
即,解得,
对于任意,欲使,
此时,只需要作直线的平行线,使圆心到直线的距离为,
必然与圆交于两点,此时,即,
因此对于任意,均满足题意,
综上.
19.(本小题满分14分)
已知函数.
⑴ 设,. ① 求方程的根; ② 若对于任意,不等式恒成立,求实数的最大值;
⑵ 若,,函数有且只有1个零点,求的值.
【解析】⑴ ① ,由可得, 则,即,则,;② 由题意得恒成立, 令,则由可得,此时恒成立,即恒成立
∵时,当且仅当时等号成立,因此实数的最大值为.
,,由,可得,令,则递增,而,因此时,因此时,,,则;时,,,则;则在递减,递增,因此最小值为,
① 若,时,,,则; logb2时,,,则; 因此且时,,因此在有零点, 且时,,因此在有零点, 则至少有两个零点,与条件矛盾;② 若,由函数有且只有1个零点,最小值为, 可得, 由,因此, 因此,即,即, 因此,则.
20.(本小题满分14分)
记.对数列()和的子集,若,定义;
若,定义.例如:时,.
现设()是公比为的等比数列,且当时,.
⑴ 求数列的通项公式;
⑵ 对任意正整数(),若,求证:;
⑶ 设,,,求证:.
【解析】⑴ 当时,,因此,从而,;
⑵ ;
⑶ 设,,则,,, ,因此原题就等价于证明.
由条件可知.
① 若,则,所以.
② 若,由可知,设中最大元素为,中最大元素为,
若,则由第⑵小题,,矛盾.
因为,所以,所以,
,即.
综上所述,,因此.
数学Ⅱ(附加题)
[选做题]本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲](本小题满分10分)
如图,在中,,,为垂足,是中点.
求证:.
【解析】 由可得,
由是中点可得,
则,
由可得,
由可得,
因此,
又可得.
B.[选修4-2:矩阵与变换](本小题满分10分)
已知矩阵,矩阵的逆矩阵,求矩阵.
【解析】 ,因此.
C.[选修4-4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系中,已知直线的参数方程为,椭圆的参数方程为,设直线与椭圆相交于两点,求线段的长.
【解析】 直线方程化为普通方程为,
椭圆方程化为普通方程为,
联立得,解得或,
因此.
D.[选修4-5:不等式选讲](本小题满分10分)
设,,,求证:.
【解析】 由可得,
.
[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
(本小题满分10分)
如图,在平面直角坐标系中,已知直线,抛物线.
⑴ 若直线过抛物线的焦点,求抛物线的方程;
⑵ 已知抛物线上存在关于直线对称的相异两点和.
①求证:线段上的中点坐标为;
②求的取值范围.
【解析】⑴ ,与轴的交点坐标为
即抛物线的焦点为,
;
⑵ ① 设点,
则:,即,
又关于直线对称,
即,
又中点一定在直线上
线段上的中点坐标为;
② 中点坐标为
即
,即关于有两个不等根
,,.
(本小题满分10分)
⑴ 求的值;
⑵ 设,,求证:
.
【解析】⑴ ;
⑵ 对任意的,
① 当时,左边,右边,等式成立,
② 假设时命题成立,
即,
当时,
左边=
,
右边,
而,
因此,
因此左边=右边,
因此时命题也成立,
综合①②可得命题对任意均成立.
另解:因为,所以
左边
又由,知
,
所以,左边右边.